首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
Chickenpox(varicella) is caused by primary infection with varicella zoster virus(VZV), which can establish long-term latency in the host ganglion. Once reactivated, the virus can cause shingles(zoster) in the host. VZV has a typical herpesvirus virion structure consisting of an inner DNA core, a capsid, a tegument, and an outer envelope. The tegument is an amorphous layer enclosed between the nucleocapsid and the envelope, which contains a variety of proteins. However, the types and functions of VZV tegument proteins have not yet been completely determined. In this review, we describe the current knowledge on the multiple roles played by VZV tegument proteins during viral infection. Moreover, we discuss the VZV tegument protein-protein interactions and their impact on viral tissue tropism in SCID-hu mice. This will help us develop a better understanding of how the tegument proteins aid viral DNA replication, evasion of host immune response, and pathogenesis.  相似文献   

6.
Varicella-zoster virus (VZV) specific cytotoxicity was investigated during acute primary VZV infection, in naturally immune subjects and after vaccination with the live attenuated varicella vaccine by using T cell cultures (TCC) generated by stimulating PBMC with VZV Ag and autologous VZV-superinfected lymphoblastoid cell lines as targets. Lysis of VZV-infected lymphoblastoid cell lines was observed by TCC from acutely infected subjects, naturally immune subjects, and recipients of the varicella vaccine. VZV glycoprotein I induced cytotoxic T cells but killing was less efficient than killing by TCC stimulated with VZV Ag. The TCC were primarily CD4+ (mean 86.6%) T lymphocytes with 15.2% of the cells coexpressing Leu-19. TCC were predominantly restricted by HLA class II as demonstrated by lack of any blocking using class I mAb and blocking of 15 to 71% by L243, a mAb to class II. Unrestricted killing as measured by killing of K562 cells occurred in all TCC but was minimally greater than that observed against uninfected autologous targets. Phenotypes of PBMC during acute infection had an initial increase in CD4+ cells and an overall decrease in the percentage of circulating Leu-11+ (CD16). No enhanced K562 killing was demonstrated in PBMC from subjects with acute infection compared to subjects without infection. CD4+ CTL may function as an important primary host response in acute varicella. Immunization with live attenuated varicella vaccine induced VZV-specific, memory CTL responses comparable to those of naturally immune subjects. The demonstration of their persistence long after primary VZV infection may indicate a role for CTL in restriction of viral replication during episodes of VZV reactivation from latency.  相似文献   

7.
Abstract: The humoral immune response to simian varicella virus (SVV) was investigated following primary and secondary experimental infection of African green monkeys. Neutralization and immunoprecipitation assays were used to determine antibody titers to SVV throughout the course of infection. The immune response to specific viral polypeptides was analyzed by immunoprecipitation analysis. The results demonstrate that the simian varicella model offers a useful approach to investigate immune mechanisms in human varicella zoster virus (VZV) infections.  相似文献   

8.
9.
Varicella zoster virus (VZV) is the etiological agent of varicella (chickenpox) and herpes zoster (HZ [shingles]). Clinical observations suggest that VZV-specific T cell immunity plays a more critical role than humoral immunity in the prevention of VZV reactivation and development of herpes zoster. Although numerous studies have characterized T cell responses directed against select VZV open reading frames (ORFs), a comprehensive analysis of the T cell response to the entire VZV genome has not yet been conducted. We have recently shown that intrabronchial inoculation of young rhesus macaques with simian varicella virus (SVV), a homolog of VZV, recapitulates the hallmarks of acute and latent VZV infection in humans. In this study, we characterized the specificity of T cell responses during acute and latent SVV infection. Animals generated a robust and broad T cell response directed against both structural and nonstructural viral proteins during acute infection in bronchoalveolar lavage (BAL) fluid and peripheral blood. During latency, T cell responses were detected only in the BAL fluid and were lower and more restricted than those observed during acute infection. Interestingly, we identified a small set of ORFs that were immunogenic during both acute and latent infection in the BAL fluid. Given the close genome relatedness of SVV and VZV, our studies highlight immunogenic ORFs that may be further investigated as potential components of novel VZV vaccines that specifically boost T cell immunity.  相似文献   

10.
11.
12.
Autophagy has been intensively studied in herpes simplex virus type 1 (HSV-1), a human alphaherpesvirus. The HSV-1 genome encodes a well-known neurovirulence protein called ICP34.5. When the gene encoding this protein is deleted from the genome, the virus is markedly less virulent when injected into the brains of animal models. Subsequent characterization of ICP34.5 established that the neurovirulence protein interacts with BECN1, thereby inhibiting autophagy and facilitating viral replication in the brain. However, an ortholog of the ICP34.5 gene is lacking in the genomes of other closely related alphaherpesviruses, such as varicella-zoster virus (VZV). Further, autophagosomes are easily identified in the exanthem (rash) that is the hallmark of both VZV diseases—varicella and herpes zoster. Inhibition of autophagy leads to diminished VZV titers. Finally, no block is detected in studies of autophagic flux following VZV infection. Thus autophagy appears to be proviral during VZV infection while antiviral during HSV-1 infection. Because divergence to this degree is extremely unusual for 2 closely related herpesviruses, we postulate that VZV has accommodated its infectious cycle to benefit from autophagic flux, whereas HSV-1 has captured cellular immunomodulatory genes to inhibit autophagy.  相似文献   

13.
14.
15.
Varicella-zoster virus (VZV) is a highly species-specific member of the Herpesviridae family. The virus exhibits multiple cell tropisms, infecting peripheral blood mononuclear cells and skin cells before establishing latency in sensory neurons. Such tropisms are essential both for primary infection, which manifests itself as chickenpox (varicella), and subsequent reactivation to cause herpes zoster (shingles). The highly cell-associated nature of the virus, coupled with its narrow host range, has resulted in the lack of an animal model that mimics its diseases in humans, thereby greatly hindering the study of events in VZV pathogenesis. Despite this, extensive studies both in vitro and in vivo in small-animal models have provided a fascinating insight into molecular events that govern VZV diseases. In addition, VZV has become the first human herpes virus for which a live attenuated vaccine has been developed.  相似文献   

16.
Characterization of the human newborn response to herpesvirus antigen   总被引:5,自引:0,他引:5  
An investigation was made into the human newborn cellular response to herpes simplex virus type 1 (HSV), cytomegalovirus (CMV), and varicella zoster virus (VZV) to understand more about the nature of the neonate's susceptibility to overwhelming infection by these viruses. Newborn mononuclear cells sustained the proliferation in culture of maternal (i.e., haplotype-matched) T cell blasts with specificity for HSV, CMV, or VZV (p less than 0.05). This is evidence for intact antigen-processing capability by newborn monocytes. The response of the maternal T cell blasts appeared to be HLA-haplotype-restricted as suggested by experiments in which maternal T cell blasts were limited in number. Our culture conditions elicited responses predominantly from the T4+ lymphocyte subset. A low frequency of herpesvirus-specific T4+ lymphocytes in newborn blood might contribute to deficient viral immunity, so we evaluated the virus-specific T cell responding frequency in human newborns in limiting dilution cultures. We were unable to find a herpesvirus-specific responder cell frequency greater than 1:1,400,000 in nonimmune newborns. Three of seven adults who had no serum antibody to CMV had a CMV responder cell frequency (RCF) of 1:100,000 to 1:200,000. The RCF to HSV in immune children, ages 18 mo to 12 yr, and adults, ages 13 to 80 yr, ranged from 1:14,000 to 1:18,000. We conclude that newborn monocyte processing of herpesvirus antigen is intact, that T cell RCF is low in neonates, and that immunity to HSV after infection outside the newborn period results in comparable RCF between adults and children.  相似文献   

17.
18.
19.
20.
Varicella Zoster Virus (VZV), the alphaherpesvirus that causes varicella upon primary infection and Herpes zoster (shingles) following reactivation in latently infected neurons, is known to be fusogenic. It forms polynuclear syncytia in culture, in varicella skin lesions and in infected fetal human ganglia xenografted to mice. After axonal infection using VZV expressing green fluorescent protein (GFP) in compartmentalized microfluidic cultures there is diffuse filling of axons with GFP as well as punctate fluorescence corresponding to capsids. Use of viruses with fluorescent fusions to VZV proteins reveals that both proteins encoded by VZV genes and those of the infecting cell are transferred in bulk from infecting non-neuronal cells to axons. Similar transfer of protein to axons was observed following cell associated HSV1 infection. Fluorescence recovery after photobleaching (FRAP) experiments provide evidence that this transfer is by diffusion of proteins from the infecting cells into axons. Time-lapse movies and immunocytochemical experiments in co-cultures demonstrate that non-neuronal cells fuse with neuronal somata and proteins from both cell types are present in the syncytia formed. The fusogenic nature of VZV therefore may enable not only conventional entry of virions and capsids into axonal endings in the skin by classical entry mechanisms, but also by cytoplasmic fusion that permits viral protein transfer to neurons in bulk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号