首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We report a molecular modelling study to validate the forcefields [condensed-phase optimised molecular potentials for atomistic simulation studies (COMPASS) and polymer-consistent forcefield (PCFF)] in predicting the physical and thermophysical properties of polymers. This work comprises of two key steps: (1) generating and validating the molecular model in predicting the material properties of the bulk amorphous emeraldine base polyaniline and (2) modelling the glass–rubber transition of the polymer. From all the molecular dynamics simulation results, it clearly shows that the more recent COMPASS forcefield provides a higher accuracy in predicting the polymer properties than PCFF, and it enables a more accurate prediction of condensed-phase properties (density, glass transition temperature, solubility parameters, etc.) in a broad range of temperature for various applications.  相似文献   

3.
Abstract

We generated φ -ψ conformational energy contour maps for the of N-acetyl alanine N'-methyl amide using the molecular mechanics forcefields AMBER, AMBER3, BI085, CFF91, CVFF, MM2, MM3, MM+, and SYBYL. With MM2, MM3, and MM+, we used a dielectric constant of ? = 1.5, the default effective value for these forcefields. With the other forcefields we used ? = 1 and 4, except with SYBYL, which, in Spartan 3.1, has no electrostatic term. All forcefields yielded the Ceq 7 conformation as a low-energy minimum or the global minimum. Most of the forcefields also yielded a minimum-energy conformation in the C5R, and αt. regions of the φ -ψ contour map. Fewer of the forcefields yielded a minimum in the Cax 7 region; however, adiabatic relaxation frequently lowered the relative energy of this region. Based on the appearance of the φ -ψ maps, the following pairs of forcefields were broadly similar (but not identical) to each other but dissimilar to the other pairs: AMBER3 and AMBER, BI085 and CHARMM, MM+ and MM2, SYBYL and ECEPP, and CFF91 and MM3. We used the data from the φ -ψ contour maps to compute the characteristic ratio of poly-L-alanine. Most of the computed values deviated significantly from the experimental value. Only the computed characteristic ratio of CFF91 without adiabatic relaxation at ? = 4 and MM3 without adiabatic relaxation at ? = 1.5 agreed with the experimental value.  相似文献   

4.
The spatial structure of the methylamide of N-acetyl-L-lysine has been analysed taking into account non-bonded and electrostatic interactions, torsional energy, bond angles distortion and hydrogen bonding. Conformational capacities of the backbone and mutual dependence of spatial structures of the backbone and the side chain was described by conformational maps obtained by energy minimisation, the dihedral angles and the bond angles of the side chain being varied for every phi, psi point. Every possible combination for phi, psi, x1-x5-angles was used corresponding to the stable form of the backbone and to torsion potential minima of the initial approximations in the calculation of preferred conformations of the molecule. Comparisons are made between stable forms of the methylamide of N-acetyl-L-lysine and Lys residues in proteins with known structure.  相似文献   

5.
N. Metatla 《Molecular simulation》2013,39(14):1187-1193
The aim of molecular modeling is to mimic reality by considering approximations appropriate to the scale at which the simulation is carried out. At the atomic level, forcefields that represent average atomic interactions are used. However, the phase space has to be adequately explored in order to compare successfully computed and experimental properties. The procedure exposed in this article considers an initial selection of relevant configurations on which a simulated annealing process is applied using the first generation forcefield OPLS, followed by a uniform hydrostatic compression using the second generation forcefield COMPASS©. The resulting data are fitted by an equation of state, from which density and bulk modulus are determined. The glass transition is then simulated and T gs are computed. Our approach is tested using a series of vinylic polymers, which differ from each other by small variations in atomic interaction combinations. The excellent agreement with experimental data shows the validity of the procedure exposed. Moreover, a clear linear relationship between simulated and experimental T gs is revealed.  相似文献   

6.
Stereochemical quality of protein structure coordinates.   总被引:49,自引:0,他引:49  
Methods have been developed to assess the stereochemical quality of any protein structure both globally and locally using various criteria. Several parameters can be derived from the coordinates of a given structure. Global parameters include the distribution of phi, psi and chi 1 torsion angles, and hydrogen bond energies. There are clear correlations between these parameters and resolution; as the resolution improves, the distribution of the parameters becomes more clustered. These features show a broad distribution about ideal values derived from high-resolution structures. Some structures have tightly clustered distributions even at relatively low resolutions, while others show abnormal scatter though the data go to high resolution. Additional indicators of local irregularity include proline phi angles, peptide bond planarities, disulfide bond lengths, and their chi 3 torsion angles. These stereochemical parameters have been used to generate measures of stereochemical quality which provide a simple guide as to the reliability of a structure, in addition to the most important measures, resolution and R-factor. The parameters used in this evaluation are not novel, and are easily calculated from structure coordinates. A program suite is currently being developed which will quickly check a given structure, highlighting unusual stereochemistry and possible errors.  相似文献   

7.
Abstract

While it is well established that classical hydrogen bonds play an important role in enzyme structure, function and dynamics, the role of weaker, but ‘activated’ C-H donor hydrogen bonds is poorly understood. The most important such case involves histidine which often plays a direct role in enzyme catalysis and possesses the most acidic C-H donor group of the standard amino acids. In the present study, we obtained optimized geometries and hydrogen bond interaction energies for C-H…O hydrogen bonded complexes between methane, ethylene, benzene, acetylene, and imidazole with water at the MP2-FC/6-31++G(2d,2p) and MP2-FC/aug-cc-pVDZ//MP2-FC/6-31++G(2d,2p) levels of theory. A strong linear relationship is obtained between the stability of the various hydrogen bonded complexes and both separation distances for H…0 and C—O. In general, these calculations indicate that C-H…0 interactions can be classified as hydrogen bonding interactions, albeit significantly weaker than the classical hydrogen bonds, but significantly stronger than just van der Waals interactions. For instance, while the electronic energy of stabilization at the MP2-FC/aug-cc-pVDZ//MP2-FC/6-31++G(2d,2p) level of theory of a water C-H…O water hydrogen bond is 4.36 kcal/mol more stable than the methane C-H…O water interaction, the water-water hydrogen bond is only 2.06 kcal/mol more stable than the imidazole Ce?H…O water hydrogen bond. Neglecting this latter hydrogen bonding interaction is obviously unacceptable. We next compare the potential energy surfaces for the imidazole Ce?H…O water and imidazole Nd?H…O hydrogen bonded complexes computed at the MP2/6-31++G(2d,2p) level of theory with the potential energy surface computed using the AMBER molecular mechanics program and forcefields. While the Weiner et al and Cornell et al AMBER forcefields reasonably account for the imidazole N-H…O water interaction, these forcefields do not adequately account for the imidazole Ce?H…O water hydrogen bond. A forcefield modification is offered that results in excellent agreement between the ab initio and molecular mechanics geometry and energy for this C-H…O hydrogen bonded complex.  相似文献   

8.
Solution structures and base pair stacking of a self- complementary DNA hexamer d(CGTACG)(2) have been studied at 5, 10 and 15 degrees C, respectively. The stacking interactions among the center base pair steps of the DNA duplex are found to improve when the terminal base pairs became less stable due to end fraying. A new structural quantity, the stacking sum (Sigma(s)), is introduced to indicate small changes in the stacking overlaps between base pairs. The improvements in the stacking overlaps to maintain the double helical conformation are probably the cause for the observed temperature dependent structural changes in double helical DNA molecule. A detailed analysis of the helical parameters, backbone torsion angles, base orientations and sugar conformations of these structures has been performed.  相似文献   

9.
Stress and strain in staphylococcal nuclease.   总被引:5,自引:5,他引:0       下载免费PDF全文
Protein molecules generally adopt a tertiary structure in which all backbone and side chain conformations are arranged in local energy minima; however, in several well-refined protein structures examples of locally strained geometries, such as cis peptide bonds, have been observed. Staphylococcal nuclease A contains a single cis peptide bond between residues Lys 116 and Pro 117 within a type VIa beta-turn. Alternative native folded forms of nuclease A have been detected by NMR spectroscopy and attributed to a mixture of cis and trans isomers at the Lys 116-Pro 117 peptide bond. Analyses of nuclease variants K116G and K116A by NMR spectroscopy and X-ray crystallography are reported herein. The structure of K116A is indistinguishable from that of nuclease A, including a cis 116-117 peptide bond (92% populated in solution). The overall fold of K116G is also indistinguishable from nuclease A except in the region of the substitution (residues 112-117), which contains a predominantly trans Gly 116-Pro 117 peptide bond (80% populated in solution). Both Lys and Ala would be prohibited from adopting the backbone conformation of Gly 116 due to steric clashes between the beta-carbon and the surrounding residues. One explanation for these results is that the position of the ends of the residue 112-117 loop only allow trans conformations where the local backbone interactions associated with the phi and psi torsion angles are strained. When the 116-117 peptide bond is cis, less strained backbone conformations are available. Thus the relaxation of the backbone strain intrinsic to the trans conformation compensates for the energetically unfavorable cis X-Pro peptide bond. With the removal of the side chain from residue 116 (K116G), the backbone strain of the trans conformation is reduced to the point that the conformation associated with the cis peptide bond is no longer favorable.  相似文献   

10.
Protein dynamics take place on many time and length scales. Coarse-grained structure-based (Go) models utilize the funneled energy landscape theory of protein folding to provide an understanding of both long time and long length scale dynamics. All-atom empirical forcefields with explicit solvent can elucidate our understanding of short time dynamics with high energetic and structural resolution. Thus, structure-based models with atomic details included can be used to bridge our understanding between these two approaches. We report on the robustness of folding mechanisms in one such all-atom model. Results for the B domain of Protein A, the SH3 domain of C-Src Kinase, and Chymotrypsin Inhibitor 2 are reported. The interplay between side chain packing and backbone folding is explored. We also compare this model to a C(alpha) structure-based model and an all-atom empirical forcefield. Key findings include: (1) backbone collapse is accompanied by partial side chain packing in a cooperative transition and residual side chain packing occurs gradually with decreasing temperature, (2) folding mechanisms are robust to variations of the energetic parameters, (3) protein folding free-energy barriers can be manipulated through parametric modifications, (4) the global folding mechanisms in a C(alpha) model and the all-atom model agree, although differences can be attributed to energetic heterogeneity in the all-atom model, and (5) proline residues have significant effects on folding mechanisms, independent of isomerization effects. Because this structure-based model has atomic resolution, this work lays the foundation for future studies to probe the contributions of specific energetic factors on protein folding and function.  相似文献   

11.
High-resolution nuclear magnetic resonance (NMR) and crystallographic data have been taken to refine the force field used in the torsion angle space nucleic acids molecular mechanics program DUPLEX. The population balance deduced from NMR studies of two carcinogen-modified DNA conformers in equilibrium was used to fine tune a sigmoidal, distance-dependent dielectric function so that reasonable relative energies could be obtained. In addition, the base-pair and backbone geometry from high-resolution crystal structures of the Dickerson-Drew dodecamer was used to re-evaluate the deoxyribose pseudorotation profile and the Lennard-Jones nonbonded energy terms. With a modified dielectric function that assumes a very steep distance-dependent form, a deoxyribose pseudorotation profile with reduced energy barriers between C2'- and C3'-endo minima, and a shift of the Lennard-Jones potential energy minimum to a distance approximately 0.4 A greater than the sum of the van der Waals' radii, the sequence-dependent conformational features of the Dickerson-Drew dodecamer in both the solid state and the aqueous liquid crystalline phase are well reproduced. The robust performance of the revised force field, in conjunction with its efficiency through implicit treatment of solvent and counterions, provides a valuable tool for elucidating conformations and structure-function relationships of DNA, including those of molecules modified by carcinogens and other ligands.  相似文献   

12.
13.
14.
Here we investigate the role of backbone-backbone hydrogen bonding interactions in stabilizing the protein folding transition states of two model protein systems, the B1 domain of protein L (ProtL) and the P22 Arc repressor. A backbone modified analogue of ProtL containing an amide-to-ester bond substitution between residues 105 and 106 was prepared by total chemical synthesis, and the thermodynamic and kinetic parameters associated with its folding reaction were evaluated. Ultimately, these parameters were used in a Phi-value analysis to determine if the native backbone-backbone hydrogen bonding interaction perturbed in this analogue (i.e. a hydrogen bond in the first beta-turn of ProtL's beta-beta-alpha-beta-beta fold) was formed in the transition state of ProtL's folding reaction. Also determined were the kinetic parameters associated with the folding reactions of two Arc repressor analogues, each containing an amide-to-ester bond substitution in the backbone of their polypeptide chains. These parameters were used together with previously established thermodynamic parameters for the folding of these analogues in Phi-value analyses to determine if the native backbone-backbone hydrogen bonding interactions perturbed in these analogues (i.e. a hydrogen bond at the end of the intersubunit beta-sheet interface and hydrogen bonds at the beginning of the second alpha-helix in Arc repressor's beta-alpha-alpha structure) were formed in the transition state of Arc repressor's folding reaction. Our results reveal that backbone-backbone hydrogen bonding interactions are formed in the beta-turn and alpha-helical transition state structures of ProtL and Arc repressor, respectively; and they were not formed in the intersubunit beta-sheet interface of Arc repressor, a region of Arc repressor's polypeptide chain previously shown to have other non-native-like conformations in Arc's protein folding transition state.  相似文献   

15.
The formation of a disulfide bond between adjacent cysteine residues is accompanied by the formation of a tight turn of the protein backbone. In nearly 90% of the structures analyzed a type VIII turn was found. The peptide bond between the two cysteines is in a distorted trans conformation, the omega torsion angle ranges from 159 to -133 degrees, with an average value of 171 degrees. The constrained nature of the vicinal disulfide turn and the pronounced difference observed between the oxidized and reduced states, suggests that vicinal disulfides may be employed as a 'redox-activated' conformational switch.  相似文献   

16.
Amino acid residues in a globular protein fold against one another into a compact structure. We have sought common physical factors within similarly folded backbone structures in such proteins which might influence the folding and which could be used in predicting the backbone structure. The physical factors examined are the 10 orthogonal ones identified by Kideraet al. (1985a). Comparison of the smoothed physical factor profiles between sequences, which have similar backbone structures, shows that there is good agreement among the profiles of helical stretches, but not for other backbone structures that have been examined. This is ascribed to the fact that helical structures involve local interactions, which then require similar physical profiles to form, but that other structures are not so strongly locally determined in the native structure.On leave from University of the Witwatersrand, Wits 2050, South Africa.  相似文献   

17.
A new semi-empirical force field has been developed to describe hydrogen-bonding interactions with a directional component. The hydrogen bond potential supports two alternative target angles, motivated by the observation that carbonyl hydrogen bond acceptor angles have a bimodal distribution. It has been implemented as a module for a macromolecular refinement package to be combined with other force field terms in the stereochemically restrained refinement of macromolecules. The parameters for the hydrogen bond potential were optimized to best fit crystallographic data from a number of protein structures. Refinement of medium-resolution structures with this additional restraint leads to improved structure, reducing both the free R-factor and over-fitting. However, the improvement is seen only when stringent hydrogen bond selection criteria are used. These findings highlight common misconceptions about hydrogen bonding in proteins, and provide explanations for why the explicit hydrogen bonding terms of some popular force field sets are often best switched off.  相似文献   

18.
A key issue in macromolecular structure modeling is the granularity of the molecular representation. A fine‐grained representation can approximate the actual structure more accurately, but may require many more degrees of freedom than a coarse‐grained representation and hence make conformational search more challenging. We investigate this tradeoff between the accuracy and the size of protein conformational search space for two frequently used representations: one with fixed bond angles and lengths and one that has full flexibility. We performed large‐scale explorations of the energy landscapes of 82 protein domains under each model, and find that the introduction of bond angle flexibility significantly increases the average energy gap between native and non‐native structures. We also find that incorporating bonded geometry flexibility improves low resolution X‐ray crystallographic refinement. These results suggest that backbone bond angle relaxation makes an important contribution to native structure energetics, that current energy functions are sufficiently accurate to capture the energetic gain associated with subtle deformations from chain ideality, and more speculatively, that backbone geometry distortions occur late in protein folding to optimize packing in the native state.  相似文献   

19.
Song J  Tan H  Wang M  Webb GI  Akutsu T 《PloS one》2012,7(2):e30361
Protein backbone torsion angles (Phi) and (Psi) involve two rotation angles rotating around the C(α)-N bond (Phi) and the C(α)-C bond (Psi). Due to the planarity of the linked rigid peptide bonds, these two angles can essentially determine the backbone geometry of proteins. Accordingly, the accurate prediction of protein backbone torsion angle from sequence information can assist the prediction of protein structures. In this study, we develop a new approach called TANGLE (Torsion ANGLE predictor) to predict the protein backbone torsion angles from amino acid sequences. TANGLE uses a two-level support vector regression approach to perform real-value torsion angle prediction using a variety of features derived from amino acid sequences, including the evolutionary profiles in the form of position-specific scoring matrices, predicted secondary structure, solvent accessibility and natively disordered region as well as other global sequence features. When evaluated based on a large benchmark dataset of 1,526 non-homologous proteins, the mean absolute errors (MAEs) of the Phi and Psi angle prediction are 27.8° and 44.6°, respectively, which are 1% and 3% respectively lower than that using one of the state-of-the-art prediction tools ANGLOR. Moreover, the prediction of TANGLE is significantly better than a random predictor that was built on the amino acid-specific basis, with the p-value<1.46e-147 and 7.97e-150, respectively by the Wilcoxon signed rank test. As a complementary approach to the current torsion angle prediction algorithms, TANGLE should prove useful in predicting protein structural properties and assisting protein fold recognition by applying the predicted torsion angles as useful restraints. TANGLE is freely accessible at http://sunflower.kuicr.kyoto-u.ac.jp/~sjn/TANGLE/.  相似文献   

20.
A restrained least squares refinement of the solution structure of the double-stranded DNA undecamer 5'd(AAGTGT-GACAT).5'd(ATGTCACACTT) comprising a portion of the specific target site of the cAMP receptor protein in the gal operon is presented. The structure is refined on the basis of both distance and planarity restraints, 2331 in all. The distance restraints comprise 150 interproton distances determined from pre-steady state nuclear Overhauser enhancement measurements and 2159 other interatomic distances derived from idealized geometry (i.e., distances between covalently bonded atoms, between atoms defining fixed bond angles, and between atoms defining hydrogen bonding in AT and GC base pairs). Two refinements were carried out and in both cases the final RMS difference between the experimental and calculated interproton distances was 0.2 A. The difference between the two refined structures is small (overall RMS difference of 0.23 A) and represents the error in the refined coordinates. Although the refined structures have an overall B-type conformation there are large variations in many of the local conformational parameters including backbone and glycosidic bond torsion angles, helical twist and propellor twist, base roll and base tilt angles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号