首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Matrix metalloproteinases (MMP) are key enzymes involved in tissue remodeling. Within the ovary, they are believed to play a major role in ovulation, and have been linked to follicle atresia. To gain insight into the regulation of MMPs, we measured the effect of hormones and growth factors on MMP2 and MMP9 mRNA levels in non-luteinizing granulosa cells in serum-free culture. FSH and IGF1 both stimulated estradiol secretion and inhibited MMP2 and MMP9 mRNA abundance. In contrast, EGF and FGF2 both inhibited estradiol secretion but had no effect on MMP expression. At physiological doses, none of these hormones altered the proportion of dead cells. Although we cannot link MMP expression with apoptosis, the specific down regulation by the gonadotropic hormones FSH and IGF1 in vitro suggests that excess MMP2 and MMP9 expression is neither required nor desired for follicle development.  相似文献   

2.
3.
4.
The matrix metalloproteinases (MMPs) are postulated to facilitate follicular rupture. In the present study, expression of the stromelysins (MMP3, MMP10, MMP11) was analyzed in the periovulatory human and rat ovary. Human granulosa and theca cells were collected from the dominant follicle at various times after human chorionic gonadotropin (hCG). Intact rat ovaries, granulosa cells, and residual tissue (tissue remaining after granulosa cell collection) were isolated from equine CG (eCG)-hCG-primed animals. Mmp10 mRNA was highly induced in human granulosa and theca cells and intact rat ovaries, granulosa cells, and residual tissue. Localization of MMP10 to granulosa and theca cells in both human and rat ovarian follicles was confirmed by immunohistochemistry. Mmp3 mRNA was unchanged in human cells and rat granulosa cells, but increased in intact rat ovaries and residual tissue. Mmp11 mRNA decreased following hCG treatment in human granulosa and theca cells as well as rat granulosa cells. Regulation of Mmp10 in cultured rat granulosa cells revealed that the EGF inhibitor AG1478 and the progesterone receptor antagonist RU486 suppressed the induction of Mmp10 mRNA, whereas the prostaglandin inhibitor NS398 had no effect. Studies on the Mmp10 promoter demonstrated that forskolin plus PMA stimulated promoter activity, which was dependent upon a proximal AP1 site. In conclusion, there are divergent patterns of stromelysin expression associated with ovulation, with a marked induction of Mmp10 mRNA and a decrease in Mmp11 mRNA, yet a species-dependent pattern on Mmp3 mRNA expression. The induction of Mmp10 expression suggests an important role for this MMP in the follicular changes associated with ovulation and subsequent luteinization.  相似文献   

5.
The extracellular matrix (ECM) plays a prominent role in ovarian function by participating in processes such as cell migration, proliferation, growth, and development. Although some of these signaling processes have been characterized in the mouse, the relative quantity and distribution of ECM proteins within developing follicles of the ovary have not been characterized. This study uses immunohistochemistry and real-time PCR to characterize the ECM components type I collagen, type IV collagen, fibronectin, and laminin in the mouse ovary according to follicle stage and cellular compartment. Collagen I was present throughout the ovary, with higher concentrations in the ovarian surface epithelium and follicular compartments. Collagen IV was abundant in the theca cell compartment with low-level expression in the stroma and granulosa cells. The distribution of collagen was consistent throughout follicle maturation. Fibronectin staining in the stroma and theca cell compartment increased throughout follicle development, while staining in the granulosa cell compartment decreased. Heavy staining was also observed in the follicular fluid of antral follicles. Laminin was localized primarily to the theca cell compartment, with a defined ring at the exterior of the follicular granulosa cells marking the basement membrane. Low levels of laminin were also apparent in the stroma and granulosa cell compartment. Taken together, the ECM content of the mouse ovary changes during follicular development and reveals a distinct spatial and temporal pattern. This understanding of ECM composition and distribution can be used in the basic studies of ECM function during follicle development, and could aid in the development of in vitro systems for follicle growth.  相似文献   

6.
7.
8.
We have recently shown that not only bradykinin, but also all components for the production of bradykinin, can be detected within the follicle of porcine ovaries. To elucidate the relevance of the intrafollicular bradykinin-producing system to its physiological role, we investigated the distribution of bradykinin receptor (B(2)R) mRNA and the protein in porcine ovaries. A cDNA encoding porcine B(2)R was first cloned from a porcine uterus cDNA library. The receptor mRNA was scarcely detected in the ovary by Northern blot analysis. Polymerase chain reaction analysis with total RNAs isolated from the ovary and from granulosa cells of small and large follicles demonstrated the ovarian expression of B(2)R mRNA. The B(2)R protein was detected by Western blot analysis in extracts of isolated granulosa cells. In situ hybridization of B(2)R mRNA and immunohistochemical analysis of the protein revealed that the receptor is expressed in the theca and granulosa cells of all growing follicles. The effect of bradykinin on the expression of some matrix metalloproteinase (MMP) genes was examined using isolated granulosa cells. Bradykinin treatment induced MMP-3 and MMP-20 gene expression to an extreme degree. The expression of MT1-MMP was also affected by bradykinin treatment. These results suggest that MMPs play a role in follicle rupture during ovulation. The present study provides new information regarding the mechanisms of bradykinin-induced ovulation in porcine ovaries.  相似文献   

9.
To investigate the interrelationship of inhibin alpha and growth differentiation factor 9 (GDF9) during early folliculogenesis, we generated mice lacking both inhibin alpha and GDF9. Our findings on these Inha Gdf9 double-mutant mice are as follows: 1). females develop ovarian tumors and a cachexia-like wasting syndrome, resembling mice lacking inhibin alpha alone. This indicates that the granulosa cells are competent to proliferate despite the lack of GDF9; 2). follicular development progresses to multiple-layer follicle stages before tumorigenesis. This demonstrates that the up-regulation of inhibin alpha in the Gdf9 knockout ovary directly prevents the proliferation of the granulosa cells at the primary follicle stage, an effect that is released in the absence of inhibin alpha; 3). a morphological theca forms around the preantral follicles with no detectable selective theca markers [i.e. 17alpha-hydroxylase (Cyp17), LH receptor (Lhr), and Kit]. These results indicate that the theca recruitment can occur independently of GDF9, but the differentiation of thecal cells is blocked; and 4). inhibin/activin subunits betaA, betaB, and Kit ligand (Kitl) mRNA are highly up-regulated, suggesting that the increased activins and KITL play functional roles in early folliculogenesis. Thus, GDF9 appears to function indirectly to regulate early granulosa cell proliferation and theca recruitment in vivo.  相似文献   

10.
Follicle development is a complex process under strict regulation of diverse hormones and cytokines including transforming growth factor β (TGF-β) superfamily members. TGF-β is pivotal for the regulation of ovarian functions under physiological and pathological conditions. In this study, effect of TGF-β1 on chicken follicle development was examined through investigating the accumulation and action of collagen, an indispensable member of the extracellular matrix (ECM) involved in this process. The granulosa cells (GCs) and theca cells (TCs) were separated from growing follicles of the laying chicken for treatment of TGF-β1 and analysis of expression of ECM components and key proteins in intracellular signaling pathways. Results showed that collagen was mainly distributed in the follicular theca layer and was produced with the formation of the granulosa layer during ovarian development. Collagen accumulation increased with follicle growth and treatment of GCs with TGF-β1 elicited an increased expression of collagen. After production from GCs, collagen was transferred to the neighboring TCs to promote cell proliferation and inhibit apoptosis. Treatment of collagen remarkably increased expression of p-ERK, mitogen-activated protein kinase (MAPK), and p-MAPK, but treatment with hydroxylase inhibitor (to break collagen structure) reversed these alterations. In conclusion, during follicle growth collagen was secreted by GCs under TGF-β1 stimulation and was subsequently collaboratively transferred to neighboring TCs to increase cell proliferation and thus to promote follicle development via an intercellular cooperative pattern during development of chicken growing follicles.  相似文献   

11.
We have investigated the possible role of theca and granulosa cell interaction in the control of the hormone-producing activity and growth of granulosa and theca cells during bovine ovarian follicular development, using a coculture system in which granulosa and theca cells were grown on opposite sides of a collagen membrane. When follicular cells were isolated from small follicles (3-5 mm), theca cells reduced estradiol, progesterone, and inhibin production by granulosa cells to 14 +/- 5%, 64 +/- 6%, and 27 +/- 4%, respectively, of the production by granulosa cells cultured alone. On the other hand, when the cells were isolated from large follicles (15-18 mm), theca cells increased these levels to 253 +/- 34%, 156 +/- 24%, and 287 +/- 45%, respectively. Theca cells did not affect the growth of granulosa cells. Androstenedione production by theca cells was augmented by granulosa cells to 861 +/- 190% (in small follicles) and 1298 +/- 414% (in large follicles), respectively. The growth of theca cells was also augmented by granulosa cells (small follicle, 210 +/- 43%, and large follicle, 194 +/- 24%, respectively). These results indicate that theca cells secrete factor(s) inhibiting the differentiation of immature while promoting that of matured granulosa cells; they also suggest that granulosa cells secrete factor(s) promoting both the differentiation and growth of theca cells throughout the follicular maturation process.  相似文献   

12.
Ovarian follicular development is controlled by numerous paracrine and endocrine regulators, including oocyte-derived growth differentiation factor 9 (GDF9), and a localized increase in bioavailable insulin-like growth factor 1 (IGF1). The effects of GDF9 on function of theca cells collected from small (3-6 mm) and large (8-22 mm) ovarian follicles were investigated. In small-follicle theca cells cultured in the presence of both LH and IGF1, GDF9 increased cell numbers and DNA synthesis, as measured by a (3)H-thymidine incorporation assay, and dose-dependently decreased both progesterone and androstenedione production. Theca cells from large follicles had little or no response to GDF9 in terms of cell proliferation or steroid production induced by IGF1. Small-follicle theca cell studies indicated that GDF9 decreased the abundance of LHR and CYP11A1 mRNA in theca cells, but had no effect on IGF1R, STAR, or CYP17A1 mRNA abundance or the percentage of cells staining for CYP17A1 proteins. GDF9 activated similar to mothers against decapentaplegics (SMAD) 2/3-induced CAGA promoter activity in transfected theca cells. Small-follicle theca cells had more ALK5 mRNA than large-follicle theca cells. Small-follicle granulosa cells appeared to have greater GDF9 mRNA abundance than large-follicle granulosa cells, but theca cells had no detectable GDF9 mRNA. We conclude that theca cells from small follicles are more responsive to GDF9 than those from large follicles and that GDF9 mRNA may be produced by granulosa cells in cattle. Because GDF9 increased theca cell proliferation and decreased theca cell steroidogenesis, oocyte- and granulosa cell-derived GDF9 may simultaneously promote theca cell proliferation and prevent premature differentiation of the theca interna during early follicle development.  相似文献   

13.
During ovarian follicle growth, there is expansion of the basal lamina and changes in the follicular extracellular matrix (ECM) that are mediated in part by proteolytic enzyme cascades regulated by tissue-type plasminogen activator (tPA) and urokinase plasminogen activator (uPA). One PA inhibitor, serine protease inhibitor-E2 (SERPINE2) is expressed in granulosa but not theca cells, and expression changes with follicle development. In this study, we hypothesized that PA and SERPINE2 expression/secretion by granulosa cells are regulated by FSH and growth factors. SERPINE2 mRNA and protein levels, tPA gene expression and uPA secretion were stimulated by FSH. Insulin-like growth factor-I stimulated SERPINE2 secretion and uPA activity, and decreased secreted tPA activity and gene expression. Bone morphogenetic protein-7 increased SERPINE2 secretion and expression and tPA secretion. In contrast, fibroblast growth factor-2 inhibited tPA secretion and SERPINE2 secretion and expression. Epidermal growth factor inhibited SERPINE2 secretion and expression, but increased secreted tPA activity. Estradiol and SERPINE2 secretion were highly positively correlated, but estradiol did not alter SERPINE2 expression. These data demonstrate that SERPINE2 expression and protein secretion are regulated by FSH and growth factors in non-luteinizing bovine granulosa cells. As estradiol is a known marker of follicle health, and SERPINE2 is an anti-apoptotic factor, we propose that SERPINE2 is involved in the regulation of atresia in bovine follicles.  相似文献   

14.
Ovarian cancer is one of the most common gynecologic malignancy with poor prognosis. Recently, long noncoding RNAs (lncRNAs) have been identified as key regulators in cancer development. The current study investigated the role of lncRNA P73 antisense RNA 1T (TP73‐AS1) in ovarian cancer. Quantitative real‐time polymerase chain reaction determined the expression levels of TP‐73AS1, matrix metallopeptidases (MMPs) messenger RNA. Cell proliferative ability, cell invasion, and migration were CCK‐8 and colony formation, and transwell invasion and migration assays, respectively. The protein levels of matrix metallopeptidase 2 (MMP2) and MMP9 were measured by Western blot. TP73‐AS1 was upregulated in the ovarian cancer tissues and ovarian cancer cells, and upregulation of TP73‐AS1 was associated with poor prognosis. Knockdown of TP73‐AS1 significantly suppressed cell proliferation, invasion, and migration of SKOV3 cells, and overexpression of TP73‐AS1 promoted cell proliferation, invasion, and migration of OVCA429 cells. In addition, knockdown of TP73‐AS1 suppressed the in vivo tumor growth. Tumor metastasis RT2 profiler polymerase chain reaction array showed that MMP2 and MMP9 was significantly upregulated by TP73‐AS1 overexpression in ovarian cancer cells. TP73‐AS1 overexpression enhanced the expression of MMP2 and MMP9 in ovarian cancer cells. Knockdown of MMP2 and MMP9 attenuated the effects of TP73‐AS1 overexpression on cell invasion and migration. The clinical data showed that MMP2 and MMP9 were upregulated and positively correlated with TP73‐AS1 expression in ovarian cancer tissues. Collectively, our results demonstrated the oncogenic role of TP73‐AS1 in ovarian cancer, and targeting TP73‐AS1 may represent a novel approach in battling against ovarian cancer.  相似文献   

15.
Betaglycan was originally characterized as the type III receptor for TGFbeta, yet recent research has indicated that betaglycan can serve as an accessory receptor for inhibin. To understand better the action of inhibin in avian follicular development, we have investigated the expression of betaglycan in the pituitary gland and ovary of the hen. In experiments 1 and 2, betaglycan mRNA was detected at 6 kilobases (kb) by Northern blot analysis (n = 5) in chicken pituitary, granulosa, and theca layers and whole ovary. Expression of betaglycan was greatest in the pituitary gland in experiment 1 and greater in the granulosa layer of small yellow follicles (SYF) compared with the granulosa layer of larger follicles. In experiment 2, betaglycan mRNA was more abundantly expressed in the theca layer compared with the granulosa layer for all follicle sizes, although there was no significant difference in betaglycan expression in the theca layer among follicle sizes. In experiment 3, immunohistochemical analysis revealed betaglycan protein in the anterior pituitary as well as in the ovary (n = 4) and SYF (n = 4). Colocalization studies revealed a high abundance of cells within the anterior pituitary expressing both betaglycan and FSH (n = 4). Betaglycan protein was found in the granulosa layer; however, markedly enhanced staining was observed in the theca layer of ovarian follicles. Our results provide evidence for expression of betaglycan mRNA and protein colocalization with FSH in the anterior pituitary, consistent with known inhibin effects. Ovarian localization of betaglycan, particularly in the theca layer, suggests a paracrine role for inhibin in the hen.  相似文献   

16.
To investigate the potential roles of matrix metalloproteinases (MMPs) in ovarian granulosa cell differentiation, we studied the interactive effects of FSH and local ovarian factors, transforming growth factor beta1 (TGFbeta1) and androstenedione, on gelatinase secretion and progesterone production in rat ovarian granulosa cells. Granulosa cells of eCG-primed immature rats were treated once with various doses of FSH and TGFbeta1 and androstenedione alone or in combinations for 2 days. Conditioned media were analyzed for gelatinase activity using gelatin-zymography/densitometry and progesterone levels using enzyme immunoassay. Cell lysates were analyzed for steroidogenic acute regulatory (StAR) and cholesterol side-chain-cleavage (P450scc) enzyme protein levels. This study demonstrates for the first time that FSH dose-dependently increased the secretion of a major 63-kDa gelatinase and minor 92- and 67-kDa gelatinases. TGFbeta1 also dose-dependently increased the secretion of 63-kDa gelatinase, while androstenedione alone had no effect. The 92-kDa gelatinase was identified as the pro-MMP9 that could be cleaved by aminophenylmercuric acetate into the 83-kDa active form. Importantly, we show that TGFbeta1 and androgen act in an additive manner to enhance FSH stimulatory effects both on the secretion of gelatinases and the production of progesterone. We further show by immunoblotting that the enhancing effect of TGFbeta1 and androstenedione on FSH-stimulated steroidogenesis is partly mediated through the increased level of StAR protein and/or P450scc enzyme. In conclusion, this study indicates that, during antral follicle development, TGFbeta1 and androgen act to enhance FSH promotion of granulosa cell differentiation and that the process may involve the interplay of modulating cell- to-matrix/cell-to-cell interaction and steroidogenic activity.  相似文献   

17.
The cellular form of the prion protein (PrP(C)) has been detected in many tissues including reproductive tissues. While its function is unclear, it has been suggested to act as a receptor for an unidentified ligand and/or as an antioxidant agent. We tested the hypothesis that PrP(C) is differentially expressed in dominant, growing, compared to subordinate bovine ovarian follicles. Using both microarray analysis and quantitative real-time PCR, the level of prion protein mRNA (Prnp) in both theca and granulosa cells was measured. We found that levels of Prnp were significantly higher in the theca cells of dominant compared to subordinate follicles but similar among granulosa cells from different follicles. This difference was apparent immediately after selection of the dominant follicle and continued to the dominance stage of the follicle wave. Levels of the protein for PrP(C) were also higher (P < 0.05) in theca cells of dominant compared to subordinate follicles. In conclusion, elevated PrP(C) was associated with ovarian follicle growth and development and we suggest that it may play a role in the success of follicle development.  相似文献   

18.
19.
The ovary contains a pool of primordial follicles containing oocytes arrested in meiosis that are the source of developing follicles for the female. Growth and differentiation factor-9 (GDF-9) is a member of the transforming growth factor beta superfamily of growth factors, and follicles of GDF-9 knockout mice arrest in the primary stage of development. The effect of GDF-9 treatment on the primordial to primary follicle transition and on subsequent follicle progression was examined using a rat ovary organ culture system. Ovaries from 4-day-old rats were cultured under serum-free conditions in the absence or presence of growth factors. GDF-9 treatment caused a decrease in the proportion of stage 1 early primary follicles and a concomitant increase in the proportion of stage 2 mature primary follicles. GDF-9 did not effect primordial follicles or stage 0 to stage 1 follicle transition. GDF-9 also did not influence stage 3 or 4 secondary follicle numbers. Isolated antral follicle granulosa and theca cell cultures were used to analyze the actions of GDF-9. GDF-9 treatment did not directly influence either granulosa or theca cell proliferation. The ability of GDF-9 to influence the expression of another growth factor was examined. GDF-9 treatment increased kit ligand (KL) mRNA expression in bovine granulosa cells after 2 days of culture. Ovaries from 4-day-old rats were also cultured with or without GDF-9 treatment, and total ovary expression of KL mRNA was increased by GDF-9. In summary, GDF-9 was found to promote the progression of early primary follicle development but did not influence primordial follicle development. The actions of GDF-9 on specific stages of follicle development may in part be mediated through altering the expression of KL.  相似文献   

20.
Interactions between theca and granulosa cells of the follicle are critical for the coordination of ovarian follicle development. The cell–cell interactions are mediated through the local production and actions of a variety of factors. The current study is designed to investigate the expression of Hgf and its receptor, c‐Met, in the mouse ovary during in vivo folliculogenesis. We found that Hgf and c‐Met mRNAs were already expressed in 2‐day‐old ovaries, and that, while c‐Met levels remained constant until 22‐day‐old, Hgf levels slightly but not significantly increased with age. The expression of Hgf mRNA in theca/interstitial cells was higher than in granulosa cells in 22‐day‐old ovaries. Immunohistochemistry analysis confirmed the expression pattern demonstrated by RT‐PCR. We investigated the role of hepatocyte growth factor (HGF) at the beginning of mouse folliculogenesis and its possible interaction with kit ligand (KL). Interestingly, both KL and HGF were able to increase the expression of each other, creating a positive feedback loop. In the presence of HGF, we observed an increase of granulosa cell proliferation and an increase in the number of pre‐antral and early antral follicles in ovary organ cultures. We also observed a significant increase in the diameters of follicles in individual follicle cultures. Moreover, HGF stimulated the expression of the FSH receptors, both in the whole ovary and in isolated pre‐antral follicle cultures. Based on the data presented, we concluded that HGF exerts multiple levels of control over follicular cell functions, which collectively enable the progression of follicular development. J. Cell. Physiol. 226: 520–529, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号