首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Benzodiazepine (BDZ) is generally thought to bind to site II of human serum albumin (HSA), also known as the indole-BDZ site, which is located at subdomain III A of the molecule. However, differences in the binding characteristics of BDZ drugs with HSA have been reported. The photolabeling profiles of HSA with [(3)H]flunitrazepam (FNZP) in the presence and absence of diazepam (DZP) were shown to be identical, suggesting that each drug primarily binds to different regions. The results of fluorescent probe displacement experiments showed that FNZP failed to decrease the fluorescence of dansylsarcosine to an extent similar to that of DZP. In the photoinhibition experiment, site I and site II ligands failed to inhibit the photoincorporation of [(3)H]FNZP to HSA. In order to evaluate the photolabeling specificity of FNZP, an attempt was made to photolabel alpha(1)-acid glycoprotein (AGP) which also binds BDZ with similar affinity as HSA. The effect of myristate (MYR) and DZP on the FNZP photolabeling of these two major drug binding plasma proteins was examined. Photoincorporation was inhibited when HSA was photolabeled with [(3)H]FNZP in the presence of MYR but not in the presence of DZP. Conversely, DZP inhibited the photolabeling of [(3)H]FNZP to AGP. These results suggest that FNZP interacts with HSA at regions which are not located in the preformed binding pocket of subdomain III A.  相似文献   

2.
It is well known that the subdomain III A (site II) of human serum albumin (HSA) binds a variety of endogenous and exogenous substances. However, the nature of the microenvironment of the binding site remains unclear. Ketoprofen (KP), an arylpropionic acid NSAID which contains a benzophenone moiety, was used as a photoaffinity labeling agent to label the binding region. Subsequent CNBr cleavage of the photolabeled HSA revealed that the 11.6 kDa and 9.4 kDa fragments contained most of the incorporated radioactivity. Competition experiments showed that the 11.6 kDa fragment contains the common binding region for site II ligands. This fragment was redigested with Achromobacter lyticus protease I (AP-I) and the amino acid sequence of the photolabeled peptide was determined to be XCTESLVNRR, which corresponds to the sequence 476C-485K of HSA. The complete amino acid sequence of the corresponding AP-I digested HSA peptide encompasses residues 476 to 499, which form helices 5 and 6 of subdomain III A. The HSA-Myr X-ray crystallography data showed that helix 5 is involved to the least extent in ligand binding. A docking model provided further support that helix 6 represents the photolabeled region of KP.  相似文献   

3.
The relationship between the two principal ligand binding sites, sites I and II, on human serum albumin (HSA) was quantitatively and qualitatively examined by equilibrium dialysis and fluorescence spectroscopy. Among the three subsite markers to site I, only the binding of dansyl-L-asparagine (DNSA), which is a subsite Ib marker (K. Yamasaki et al., Biochim. Biophys. Acta 1295 (1996) 147), was inhibited by the simultaneous binding of a site II ligand, such as ibuprofen and diazepam. This indicates that, in contrast to subsite Ib, subsites Ia and Ic do not strongly interact with site II. The thermodynamic characteristics for the coupling reaction between DNSA and ibuprofen and between DNSA and diazepam, which gave positive coupling free energies and negative values for both coupling enthalpy and entropy, indicated that the reaction process was entropically driven. Increase of pH from 6.5 to 8.2 caused an increase in coupling constant and entropy for the mutual antagonism between DNSA and the site II ligands on binding to HSA. The site II ligand-induced red-shift of lambda(max) and solvent accessibility of DNSA in subsite Ib were decreased when the albumin molecule was isomerized from the neutral (N) to the base (B) conformation in the physiological pH region. Based on these findings, we conclude that a 'competitive' like strong allosteric regulation exists for the binding of these two ligands to the N conformer, whereas for the B conformer this interaction can be classified as nearly 'independent'. Since the distance between Trp-214, which resides within the site I subdomain, and Tyr-411, which is involved in site II, is increased by 6 A during the N-B transition (N.G. Hagag et al., Fed. Proc. 41 (1982) 1189), we propose a mechanism for the pH-dependent antagonistic binding between subsite Ib and site II, which involves the transmission of ligand-induced allosteric effects from one site to another site, modified by changes in the spatial relationship of sites I and II caused by the N-B transition.  相似文献   

4.
Petersen CE  Ha CE  Curry S  Bhagavan NV 《Proteins》2002,47(2):116-125
The binding of warfarin to the following human serum albumin (HSA) mutants was examined: K195M, K199M, F211V, W214L, R218M, R222M, H242V, and R257M. Warfarin bound to human serum albumin (HSA) exhibits an intrinsic fluorescence that is approximately 10-fold greater than the corresponding signal for warfarin in aqueous solution. This property of the warfarin/HSA complex has been widely used to determine the dissociation constant for the interaction. In the present study, such a technique was used to show that specific substitutions in subdomain 2A altered the affinity of HSA for warfarin. The fluorescence of warfarin/mutant HSA complexes varied widely from the fluorescence of the warfarin/wild-type HSA complex at pH = 7.4, suggesting changes in the structure of the complex resulting from specific substitutions. The fluorescence of the warfarin/wild-type HSA complex increases about twofold as the pH is increased from 6.0 to 9.0 due to the neutral-to-base (N-B) transition, a conformational change that occurs in HSA as a function of pH. Changes in the fluorescence of warfarin/mutant HSA complexes as a function of pH suggests novel behavior for most HSA species examined. For the HSA mutants F211V and H242V, the midpoint of the N-B transition shifts from a wild-type pH of 7.8 to a pH value of 7.1-7.2.  相似文献   

5.
Monoclonal antibodies (mAbs) were prepared to analyse the conformation of human serum albumin (HSA) and its non-enzymatic glycation (NEG) products. We first determined the epitopes of the mAbs using HSA subdomains expressed on the surface of yeast. Each mAb was classified as belonging to one of two groups; Type I mAbs which recognized a single subdomain structure and Type II mAbs which bound to plural subdomains. We analysed the pH-dependent conformational change in HSA. We found that one Type II mAb, HAy2, detected the normal to base form (N-B) transition while the other did not, suggesting that N-B transition occurred around Domain I accompanied by topological isomerization of subdomains without changing the subdomain structure itself. Next, we analysed the conformations of the NEG products. Since all mAbs reacted with the early NEG products, no structural change was thought to have occurred in the early NEG products. On the other hand, only a Type I mAb, HAy1, had full binding activity with the advanced glycation end products (AGE) while the other mAbs had lost or had diminished activity, suggesting that the over-all tertiary structure of HSA was altered except for a subdomain, sDOM Ia, in AGE.  相似文献   

6.
Characterization of photoaffinity labeling of benzodiazepine binding sites   总被引:12,自引:0,他引:12  
The specific photoaffinity labeling of membrane-bound and detergent-solubilized benzodiazepine binding sites has been investigated using UV irradiated [3H] flunitrazepam as a photochemical probe. The time course and the regional and pharmacological specificity of the photolabeling reaction has been determined for "brain-specific" benzodiazepine binding sites; "peripheral-type" binding sites treated in an identical manner were not specifically labeled. Comparison of the number of sites labeled and blocked by [3H]flunitrazepam photolabeling of detergent-solubilized preparations indicated that about one site was blocked and unavailable for reversible binding for each site photolabeled. In contrast, when membrane-bound sites were photolabeled, about four sites were inactivated for each site photolabeled. Examination of photolabeled binding sites from various brain regions including cortex, striatum, and hippocampus using sodium dodecyl sulfate-polyacrylamide gel electrophoresis gave only a single labeled band of apparent Mr = 48,000.  相似文献   

7.
Tryptophan 214, the only tryptophan residue in human serum albumin, is located in the physiologically important subdomain 2A ligand binding site. In the present study the fluorescence lifetime of tryptophan 214 in the following human serum albumin (HSA) mutants with substitutions in subdomain 2A were determined: K195M, K199M, F211V, R218M, R218H, R218A, R222M, H242V, and R257M. An HSA mutant in which tryptophan was moved from subdomain 2A to subdomain 3A (W214L/Y411W) was also examined. Additionally, the fluorescence lifetime of tryptophan 214 in an HSA fragment consisting of subdomains 1A, 1B, and 2A (1A-1B-2A HSA) was determined. For those species expected to have the most dramatic changes in tryptophan microenvironment, W214L/Y411W and 1A-1B-2A HSA, clear changes in tryptophan lifetimes were observed. Significant changes were also seen for those species with mutations at position 218, which is next to tryptophan in the X-ray structure of HSA. However, significant changes were also observed for H242V and R257M, which contain substitutions at positions not immediately adjacent to tryptophan 214, highlighting the conformational flexibility of subdomain 2A.  相似文献   

8.
The γ-aminobutyric acid type A receptor (GABA(A)R) is a target for general anesthetics of diverse chemical structures, which act as positive allosteric modulators at clinical doses. Previously, in a heterogeneous mixture of GABA(A)Rs purified from bovine brain, [3H]azietomidate photolabeling of αMet-236 and βMet-286 in the αM1 and βM3 transmembrane helices identified an etomidate binding site in the GABA(A)R transmembrane domain at the interface between the β and α subunits [Li, G. D., et.al. (2006) J. Neurosci. 26, 11599-11605]. To further define GABA(A)R etomidate binding sites, we now use [3H]TDBzl-etomidate, an aryl diazirine with broader amino acid side chain reactivity than azietomidate, to photolabel purified human FLAG-α1β3 GABA(A)Rs and more extensively identify photolabeled GABA(A)R amino acids. [3H]TDBzl-etomidate photolabeled in an etomidate-inhibitable manner β3Val-290, in the β3M3 transmembrane helix, as well as α1Met-236 in α1M1, a residue photolabeled by [3H]azietomidate, while no photolabeling of amino acids in the αM2 and βM2 helices that also border the etomidate binding site was detected. The location of these photolabeled amino acids in GABA(A)R homology models derived from the recently determined structures of prokaryote (GLIC) or invertebrate (GluCl) homologues and the results of computational docking studies predict the orientation of [3H]TDBzl-etomidate bound in that site and the other amino acids contributing to this GABA(A)R intersubunit etomidate binding site. Etomidate-inhibitable photolabeling of β3Met-227 in βM1 by [3H]TDBzl-etomidate and [3H]azietomidate also provides evidence of a homologous etomidate binding site at the β3-β3 subunit interface in the α1β3 GABA(A)R.  相似文献   

9.
Firefly luciferase is one of the few soluble proteins that is acted upon by a wide variety of general anesthetics and alcohols; they inhibit the ATP-driven production of light. We have used time-resolved photolabeling to locate the binding sites of alcohols during the initial light output, some 200 ms after adding ATP. The photolabel 3-azioctanol inhibited the initial light output with an IC50 of 200 μM, close to its general anesthetic potency. Photoincorporation of [(3)H]3-azioctanol into luciferase was saturable but weak. It was enhanced 200 ms after adding ATP but was negligible minutes later. Sequencing of tryptic digests by HPLC-MSMS revealed a similar conformation-dependence for photoincorporation of 3-azioctanol into Glu-313, a residue that lines the bottom of a deep cleft (vestibule) whose outer end binds luciferin. An aromatic diazirine analog of benzyl alcohol with broader side chain reactivity reported two sites. First, it photolabeled two residues in the vestibule, Ser-286 and Ile-288, both of which are implicated with Glu-313 in the conformation change accompanying activation. Second, it photolabeled two residues that contact luciferin, Ser-316 and Ser-349. Thus, time resolved photolabeling supports two mechanisms of action. First, an allosteric one, in which anesthetics bind in the vestibule displacing water molecules that are thought to be involved in light output. Second, a competitive one, in which anesthetics bind isosterically with luciferin. This work provides structural evidence that supports the competitive and allosteric actions previously characterized by kinetic studies.  相似文献   

10.
The density of bovine peripheral-type benzodiazepine receptors (PBR) in four tissues was highest in adrenal cortex. The adrenal cortex PBR cofractionated with a mitochondrial membrane marker enzyme and could be solubilized with intact ligand binding properties using digitonin. The membrane bound and soluble mitochondrial receptors were pharmacologically characterized and showed the rank order of potency to inhibit [3H]PK 11195 binding was PK 11195 greater than protoporphyrin IX greater than benzodiazepines (clonazepam, diazepam, or Ro5-4864). [3H]PK 11195 binding to bovine adrenal mitochondria was unaffected by diethylpyrocarbonate, a histidine residue modifying reagent that decreased binding to rat liver mitochondria by 70%. [3H]PK 14105 photolabeled the bovine PBR and the Mr was estimated under nondenaturing (200 kDa) and denaturing (17 kDa) conditions. These results demonstrate the bovine peripheral-type benzodiazepine receptor is pharmacologically and biochemically distinct from the rat receptor, but the receptor component photolabeled by an isoquinoline ligand has a similar molecular weight.  相似文献   

11.
7-Hydroxystaurosporine (UCN-01) is a protein kinase inhibitor anticancer drug currently undergoing a phase II clinical trial. The low distribution volumes and systemic clearance of UCN-01 in human patients have been found to be caused in part by its extraordinarily high affinity binding to human alpha1-acid glycoprotein (hAGP). In the present study, we photolabeled hAGP with [3H]UCN-01 without further chemical modification. The photolabeling specificity of [3H]UCN-01 was confirmed by findings in which other hAGP binding ligands inhibited formation of covalent bonds between hAGP and [3H]UCN-01. The amino acid sequence of the photolabeled peptide was concluded to be SDVVYTDXK, corresponding to residues Ser-153 to Lys-161 of hAGP. No PTH derivatives were detected at the 8th cycle, which corresponded to the 160th Trp residue. This strongly implies that Trp-160 was photolabeled by [3H]UCN-01. Three recombinant hAGP mutants (W25A, W122A, and W160A) and wild-type recombinant hAGP were photolabeled by [3H]UCN-01. Only mutant W160A showed a marked decrease in the extent of photoincorporation. These results strongly suggest that Trp-160 plays a prominent role in the high affinity binding of [3H]UCN-01 to hAGP. A docking model of UCN-01 and hAGP around Trp-160 provided further details of the binding site topology.  相似文献   

12.
Two distinct genotypes that result in the amino acid substitutions R218P and R218H in subdomain 2A of human serum albumin (HSA) have been identified as the cause of familial dysalbuminemic hyperthyroxinemia (FDH). These substitutions increase the affinity of subdomain 2A for thyroxine by approximately 10-fold elevating plasma thyroxine levels in affected individuals. While many studies have examined the binding of thyroxine to FDH HSA, the binding of FDH HSA to drugs has not been widely investigated. The widely administered drug warfarin was selected as a model compound to study FDH HSA/drug interactions since it binds to subdomain 2A and its pharmacokinetics are dramatically influenced by HSA binding. Using two independent methods, fluorescence spectroscopy and equilibrium dialysis with radioactive warfarin, the binding of recombinant R218P, R218H, R218M and wild type HSA to warfarin was measured. Both methods showed an approximately 5-fold decrease in the affinity of R218P, R218H and R218M HSA for warfarin relative to wild type HSA. The Kd values determined by fluorescence spectroscopy for wild type, R218H, R218P and R218M HSA binding to warfarin were 1.35, 5.38, 5.61, and 8.34 microM, respectively. The values determined by equilibrium dialysis were 5.36, 29.5, 14.5, and 23.4 microM, respectively. Based on the above findings one would expect the free serum warfarin concentration in homozygous R218P and R218H FDH patients to be elevated about 5-fold, resulting in about a 5-fold reduction in the serum half-life of the drug.  相似文献   

13.
Human serum albumin (HSA) is best known for its extraordinary ligand binding capacity. HSA has a high affinity for heme and is responsible for the transport of medium and long chain fatty acids. Here, we report myristate binding to the N and B conformational states of Mn(III)heme-HSA (i.e. at pH 7.0 and 10.0, respectively) as investigated by optical absorbance and NMR spectroscopy. At pH 7.0, Mn(III)heme binds to HSA with lower affinity than Fe(III)heme, and displays a water molecule coordinated to the metal. Myristate binding to a secondary site FAx, allosterically coupled to the heme site, not only increases optical absorbance of Mn(III)heme-bound HSA by a factor of approximately three, but also increases the Mn(III)heme affinity for the fatty acid binding site FA1 by 10-500-fold. Cooperative binding appears to occur at FAx and accessory myristate binding sites. The conformational changes of the Mn(III)heme-HSA tertiary structure allosterically induced by myristate are associated with a noticeable change in both optical absorbance and NMR spectroscopic properties of Mn(III)heme-HSA, allowing the Mn(III)-coordinated water molecule to exchange with the solvent bulk. At pH = 10.0 both myristate affinity for FAx and allosteric modulation of FA1 are reduced, whereas cooperation of accessory sites and FAx is almost unaffected. Moreover, Mn(III)heme binds to HSA with higher affinity than at pH 7.0 even in the absence of myristate, and the metal-coordinated water molecule is displaced. As a whole, these results suggest that FA binding promotes conformational changes reminiscent of N to B state HSA transition, and appear of general significance for a deeper understanding of the allosteric modulation of ligand binding properties of HSA.  相似文献   

14.
The rates of exchange of the C-2 protons of histidine residues in copper-zinc superoxide dismutase are substantially decreased by metal ion binding. This observation was used to distinguish between ligand and non ligand histidine residues in bovine and yeast copper-zinc superoxide dismutases; the effect was shown to depend only on metal ion co-ordination and not as a consequence of concomitant changes in protein structure. Selective deuteration of the zinc-only proteins at pH (uncorrected pH-meter reading) 8.2 and 50 degrees C resulted in the distinction between copper and zinc ligand resonances in the 1H n.m.r. spectrum of the enzymes. This method is proposed as a generally applicable technique for identifying histidine residues as ligands in metalloproteins.  相似文献   

15.
The electrophilic lipid oxidation product 4-hydroxy-2-nonenal (HNE) reacts with proteins to form covalent adducts, and this damage has been implicated in pathologies associated with oxidative stress. HNE adduction of blood proteins, such as human serum albumin (HSA), yields adducts that may serve as markers of oxidative stress in vivo. We used liquid chromatography-tandem mass spectrometry (LC-MS-MS) and the P-Mod algorithm to map the sites of 10 adducts formed by reaction of HNE with HSA in vitro. The detected adducts included Michael adducts formed at histidine and lysine residues. The selectivity of HNE in competing adduction reactions was evaluated by analysis of kinetics for HNE Michael adduction at six targeted HSA histidine residues. Reaction kinetics were analyzed by selected reaction monitoring in LC-MS-MS using stable isotope tagging with phenyl isocyanate. Rate constants ranged over 4 orders of magnitude, with the order of reactivity being H242 > H510 > H67 > H367 > H247 approximately K233. The most reactive target, H242, is located in a fatty acid- and drug binding cavity in subdomain IIa of HSA and appears to be a hot-spot for HNE modification. Analysis of adduction kinetics together with HSA structure and target residue pK(a) values suggest that location in the hydrophobic binding cavity and low predicted pK(a) of H242 account for its high reactivity toward HNE. H242 adducts may be preferred products of adduction by lipophilic electrophiles and may comprise a family of biomarkers for oxidative stress.  相似文献   

16.
Etomidate, one of the most potent general anesthetics used clinically, acts at micromolar concentrations as an anesthetic and positive allosteric modulator of gamma-aminobutyric acid responses, whereas it inhibits muscle-type nicotinic acetylcholine receptors (nAChRs) at concentrations above 10 microm. We report here that TDBzl-etomidate, a photoreactive etomidate analog, acts as a positive allosteric nAChR modulator rather than an inhibitor, and we identify its binding sites by photoaffinity labeling. TDBzl-etomidate (>10 microm) increased the submaximal response to acetylcholine (10 microm) with a 2.5-fold increase at 60 microm. At higher concentrations, it inhibited the binding of the noncompetitive antagonists [(3)H]tetracaine and [(3)H]phencyclidine to Torpedo nAChR-rich membranes (IC(50) values of 0. 8 mm). nAChR-rich membranes were photolabeled with [(3)H]TDBzl-etomidate, and labeled amino acids were identified by Edman degradation. For nAChRs photolabeled in the absence of agonist (resting state), there was tetracaine-inhibitable photolabeling of amino acids in the ion channel at positions M2-9 (deltaLeu-265) and M2-13 (alphaVal-255 and deltaVal-269), whereas labeling of alphaM2-10 (alphaSer-252) was not inhibited by tetracaine but was enhanced 10-fold by proadifen or phencyclidine. In addition, there was labeling in gammaM3 (gammaMet-299), a residue that contributes to the same pocket in the nAChR structure as alphaM2-10. The pharmacological specificity of labeling of residues, together with their locations in the nAChR structure, indicate that TDBzl-etomidate binds at two distinct sites: one within the lumen of the ion channel (labeling of M2-9 and -13), an inhibitory site, and another at the interface between the alpha and gamma subunits (labeling of alphaM2-10 and gammaMet-299) likely to be a site for positive allosteric modulation.  相似文献   

17.
Photoreactive derivatives of the general anesthetic etomidate have been developed to identify their binding sites in γ-aminobutyric acid, type A and nicotinic acetylcholine receptors. One such drug, [(3)H]TDBzl-etomidate (4-[3-(trifluoromethyl)-3H-diazirin-3-yl]benzyl-[(3)H]1-(1-phenylethyl)-1H-imidazole-5-carboxylate), acts as a positive allosteric potentiator of Torpedo nACh receptor (nAChR) and binds to a novel site in the transmembrane domain at the γ-α subunit interface. To extend our understanding of the locations of allosteric modulator binding sites in the nAChR, we now characterize the interactions of a second aryl diazirine etomidate derivative, TFD-etomidate (ethyl-1-(1-(4-(3-trifluoromethyl)-3H-diazirin-3-yl)phenylethyl)-1H-imidazole-5-carboxylate). TFD-etomidate inhibited acetylcholine-induced currents with an IC(50) = 4 μM, whereas it inhibited the binding of [(3)H]phencyclidine to the Torpedo nAChR ion channel in the resting and desensitized states with IC(50) values of 2.5 and 0.7 mm, respectively. Similar to [(3)H]TDBzl-etomidate, [(3)H]TFD-etomidate bound to a site at the γ-α subunit interface, photolabeling αM2-10 (αSer-252) and γMet-295 and γMet-299 within γM3, and to a site in the ion channel, photolabeling amino acids within each subunit M2 helix that line the lumen of the ion channel. In addition, [(3)H]TFD-etomidate photolabeled in an agonist-dependent manner amino acids within the δ subunit M2-M3 loop (δIle-288) and the δ subunit transmembrane helix bundle (δPhe-232 and δCys-236 within δM1). The fact that TFD-etomidate does not compete with ion channel blockers at concentrations that inhibit acetylcholine responses indicates that binding to sites at the γ-α subunit interface and/or within δ subunit helix bundle mediates the TFD-etomidate inhibitory effect. These results also suggest that the γ-α subunit interface is a binding site for Torpedo nAChR negative allosteric modulators (TFD-etomidate) and for positive modulators (TDBzl-etomidate).  相似文献   

18.
Purified sarcoplasmic reticulum ATPase was phosphorylated by either ATP or UTP under otherwise identical conditions. Calcium, pH, and nucleotide concentrations were adjusted to permit maximal steady-state accumulation of phosphoenzyme (EP). Either 4 or 8.5 nmol of EP/mg of protein were obtained with ATP or UTP, respectively. Tryptic digestion of phosphorylated ATPase followed by acid gel electrophoresis showed that EP from UTP was on fragment A1, similar to the report in the literature for EP from ATP. Phosphorylation with Pi in the absence of calcium gave EP levels similar to those obtained from UTP. Thus, comparison of EP levels from different substrates measured in parallel in the same preparation reveal that with ATP half of the sites are phosphorylated. Illumination of the ATPase with UV light in the presence of [3H]UTP caused photolabeling of the ATPase at a maximal level of 1 nmol of [3H]UTP incorporated/mg of ATPase. The UTP concentration dependence for photolabeling was the same as that for promoting catalysis. ATP when present in the illumination protected with a competitive pattern against photolabeling with UTP. Tryptic digestion and autoradiography of photolabeled ATPase revealed that UTP was covalently attached to tryptic fragment A2. The data indicate that a peptide sequence of fragment A2 is involved in the binding of the nucleoside moiety of UTP and possibly belongs to the nucleotide domain of the ATPase in addition to the sequence of fragment A1 which contains the phosphorylation residue.  相似文献   

19.
The binding of fisetin with human serum albumin (HSA) has been studied at different pH using UV-Vis, FTIR, CD and fluorescence spectroscopic techniques. The binding constants were found to increase with the rise in pH of the media. The negative ΔH° (kJ mol-1) and positive ΔS° (J mol-1 K-1) indicate that fisetin binds to HSA via electrostatic interactions with an initial hydrophobic association that result in a positive ΔS° . In presence of potassium chloride (KCl) the binding constants were found to be decrease. The α-helical content of HSA increased after binding with fisetin as analyzed from both CD and FTIR methods. The site marker displacement studies using fluorescence anisotropy suggest that fisetin binds to the hydrophobic pocket (Site 1, subdomain IIA) of HSA which is in good accordance with the molecular docking study. The change in accessible surface area (ASA) of residues of HSA was calculated to get a better insight into the binding.  相似文献   

20.
meta-Azi-propofol (AziPm) is a photoactive analog of the general anesthetic propofol. We photolabeled a myelin-enriched fraction from rat brain with [3H]AziPm and identified the sirtuin deacetylase SIRT2 as a target of the anesthetic. AziPm photolabeled three SIRT2 residues (Tyr139, Phe190, and Met206) that are located in a single allosteric protein site, and propofol inhibited [3H]AziPm photolabeling of this site in myelin SIRT2. Structural modeling and in vitro experiments with recombinant human SIRT2 determined that propofol and [3H]AziPm only bind specifically and competitively to the enzyme when co-equilibrated with other substrates, which suggests that the anesthetic site is either created or stabilized in enzymatic conformations that are induced by substrate binding. In contrast to SIRT2, specific binding of [3H]AziPm or propofol to recombinant human SIRT1 was not observed. Residues that line the propofol binding site on SIRT2 contact the sirtuin co-substrate NAD+ during enzymatic catalysis, and assays that measured SIRT2 deacetylation of acetylated α-tubulin revealed that propofol inhibits enzymatic function. We conclude that propofol inhibits the mammalian deacetylase SIRT2 through a conformation-specific, allosteric protein site that is unique from the previously described binding sites of other inhibitors. This suggests that propofol might influence cellular events that are regulated by protein acetylation state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号