首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nodZ gene, which is present in various rhizobial species, is involved in the addition of a fucose residue in an alpha 1-6 linkage to the reducing N-acetylglucosamine residue of lipo-chitin oligosaccharide signal molecules, the so-called Nod factors. Fucosylation of Nod factors is known to affect nodulation efficiency and host specificity. Despite a lack of overall sequence identity, NodZ proteins share conserved peptide motifs with mammalian and plant fucosyltransferases that participate in the biosynthesis of complex glycans and polysaccharides. These peptide motifs are thought to play important roles in catalysis. NodZ was expressed as an active and soluble form in Escherichia coli and was subjected to site-directed mutagenesis to investigate the role of the most conserved residues. Enzyme assays demonstrate that the replacement of the invariant Arg-182 by either alanine, lysine, or aspartate results in products with no detectable activity. A similar result is obtained with the replacement of the conserved acidic position (Asp-275) into its corresponding amide form. The residues His-183 and Asn-185 appear to fulfill functions that are more specific to the NodZ subfamily. Secondary structure predictions and threading analyses suggest the presence of a "Rossmann-type" nucleotide binding domain in the half C-terminal part of the catalytic domain of fucosyltransferases. Site-directed mutagenesis combined with theoretical approaches have shed light on the possible nucleotide donor recognition mode for NodZ and related fucosyltransferases.  相似文献   

2.
The Notch signaling pathway plays an important role in development and physiology. In Drosophila, Notch is activated by its Delta or Serrate ligands, depending in part on the sugar modifications present in its extracellular domain. O-fucosyltransferase-1 (OFUT1) performs the first glycosylation step in this process, O-fucosylating various EGF repeats at the Notch extracellular domain. Besides its O-fucosyltransferase activity, OFUT1 also behaves as a chaperone during Notch synthesis and is able to down regulate Notch by enhancing its endocytosis and degradation. We have reevaluated the roles that O-fucosylation and the synthesis of GDP-fucose play in the regulation of Notch protein stability. Using mutants and the UAS/Gal4 system, we modified in developing tissues the amount of GDP-mannose-deshydratase (GMD), the first enzyme in the synthesis of GDP-fucose. Our results show that GMD activity, and likely the levels of GDP-fucose and O-fucosylation, are essential to stabilize the Notch protein. Notch degradation observed under low GMD expression is absolutely dependent on OFUT1 and this is also observed in Notch Abruptex mutants, which have mutations in some potential O-fucosylated EGF domains. We propose that the GDP-fucose/OFUT1 balance determines the ability of OFUT1 to endocytose and degrade Notch in a manner that is independent of the residues affected by Abruptex mutations in Notch EGF domains.  相似文献   

3.
Chigira Y  Oka T  Okajima T  Jigami Y 《Glycobiology》2008,18(4):303-314
Development of a heterologous system for the production of homogeneoussugar structures has the potential to elucidate structure–functionrelationships of glycoproteins. In the current study, we usedan artificial O-glycosylation pathway to produce an O-fucosylatedepidermal growth factor (EGF) domain in Saccharomyces cerevisiae.The in vivo O-fucosylation system was constructed via expressionof genes that encode protein O-fucosyltransferase 1 and theEGF domain, along with genes whose protein products convertcytoplasmic GDP-mannose to GDP-fucose. This system allowed identificationof an endogenous ability of S. cerevisiae to transport GDP-fucose.Moreover, expression of EGF domain mutants in this system revealedthe different contribution of three disulfide bonds to in vivoO-fucosylation. In addition, lectin blotting revealed differencesin the ability of fucose-specific lectin to bind the O-fucosylatedstructure of EGF domains from human factors VII and IX. Furtherintroduction of the human fringe gene into yeast equipped withthe in vivo O-fucosylation system facilitated the addition ofN-acetylglucosamine to the EGF domain from factor IX but notfrom factor VII. The results suggest that engineering of anO-fucosylation system in yeast provides a powerful tool forproducing proteins with homogenous carbohydrate chains. Suchproteins can be used for the analysis of substrate specificityand the production of antibodies that recognize O-glycosylatedEGF domains.  相似文献   

4.
The NG domain of the prokaryotic signal recognition protein Ffh is a two-domain GTPase that comprises part of the prokaryotic signal recognition particle (SRP) that functions in co-translational targeting of proteins to the membrane. The interface between the N and G domains includes two highly conserved sequence motifs and is adjacent in sequence and structure to one of the conserved GTPase signature motifs. Previous structural studies have shown that the relative orientation of the two domains is dynamic. The N domain of Ffh has been proposed to function in regulating the nucleotide-binding interactions of the G domain. However, biochemical studies suggest a more complex role for the domain in integrating communication between signal sequence recognition and interaction with receptor. Here, we report the structure of the apo NG GTPase of Ffh from Thermus aquaticus refined at 1.10 A resolution. Although the G domain is very well ordered in this structure, the N domain is less well ordered, reflecting the dynamic relationship between the two domains previously inferred. We demonstrate that the anisotropic displacement parameters directly visualize the underlying mobility between the two domains, and present a detailed structural analysis of the packing of the residues, including the critical alpha4 helix, that comprise the interface. Our data allows us to propose a structural explanation for the functional significance of sequence elements conserved at the N/G interface.  相似文献   

5.
Fucose transfer from GDP-fucose to GlcNAc residues of the sialylated polylactosamine acceptor NeuAcalpha2-3Galbeta1-4Glc-NAcbeta1-3Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glcbeta1-ceramide leads to two isomeric monofucosyl antigens, VIM2 and sialyl-Le(x). Human alpha1,3/4-fucosyltransferase (FucT)-V catalyzes primarily the synthesis of VIM2, whereas human FucT-VI catalyzes primarily the synthesis of sialyl-Le(x). Thus, these two enzymes have distinct "site-specific fucosylation" properties. Amino acid sequence alignment of these enzymes showed that there are 24 amino acid differences in their catalytic domains. Studies were conducted to determine which of the amino acid differences are responsible for the site-specific fucosylation properties of each enzyme. Domain swapping (replacing a portion of the catalytic domain from one enzyme with an analogous portion from the other enzyme) demonstrated that site-specific fucosylation was defined within a 40-amino acid segment containing 8 amino acid differences between the two enzymes. Site-directed mutagenesis studies demonstrated that the site-specific fucosylation properties of these enzymes could be reversed by substituting 4 amino acids from one sequence with the other. These results were observed in both in vitro enzyme assays and flow cytometric analyses of Chinese hamster ovary cells transfected with plasmids containing the various enzyme constructs. Modeling studies of human FucT using a structure of a bacterial fucosyltransferase as a template demonstrated that the amino acids responsible for site-specific fucosylation map near the GDP-fucose-binding site. Additional enzyme studies demonstrated that FucT-VI has approximately 12-fold higher activity compared with FucT-V and that the Trp(124)/Arg(110) site in these enzymes is responsible primarily for this activity difference.  相似文献   

6.
The human autoimmune regulator (AIRE) gene encodes a putative DNA-binding protein, which is mutated in patients affected by the autoimmune polyglandular syndrome type 1 or autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. We have recently reported that AIRE can bind to two different DNA sequence motifs, suggesting the existence of at least two DNA-binding domains in the AIRE protein. By expressing a series of recombinant AIRE protein fragments, we demonstrate here that the two well-known plant homeodomains (PHD) domains in AIRE can bind to the ATTGGTTA sequence motif. The first ATTGGTTA-binding domain is mapped to amino acids 299-355 and the second ATTGGTTA-binding domain to amino acids 434-475. Furthermore, the SAND domain of AIRE is shown to bind to TTATTA motif. Results presented herein show that the residues at position 189-196 of AIRE (QRAVAMSS) are required for its binding to the TTATTA motif. The required sequence for DNA binding in the SAND domain of AIRE is remarkably different from other SAND-containing proteins such as Sp-100b and NUDR. Data presented in this paper indicate that the two PHD domains contained in AIRE, in addition to the SAND domain, can bind to specific DNA sequence motifs.  相似文献   

7.
Background: GDP-mannose 4,6 dehydratase (GMD) catalyzes the conversion of GDP-(D)-mannose to GDP-4-keto, 6-deoxy-(D)-mannose. This is the first and regulatory step in the de novo biosynthesis of GDP-(L)-fucose. Fucose forms part of a number of glycoconjugates, including the ABO blood groups and the selectin ligand sialyl Lewis X. Defects in GDP-fucose metabolism have been linked to leukocyte adhesion deficiency type II (LADII). Results: The structure of the GDP-mannose 4,6 dehydratase apo enzyme has been determined and refined using data to 2.3 A resolution. GMD is a homodimeric protein with each monomer composed of two domains. The larger N-terminal domain binds the NADP(H) cofactor in a classical Rossmann fold and the C-terminal domain harbors the sugar-nucleotide binding site. We have determined the GMD dissociation constants for NADP, NADPH and GDP-mannose. Each GMD monomer binds one cofactor and one substrate molecule, suggesting that both subunits are catalytically competent. GDP-fucose acts as a competitive inhibitor, suggesting that it binds to the same site as GDP-mannose, providing a mechanism for the feedback inhibition of fucose biosynthesis. Conclusions: The X-ray structure of GMD reveals that it is a member of the short-chain dehydrogenase/reductase (SDR) family of proteins. We have modeled the binding of NADP and GDP-mannose to the enzyme and mutated four of the active-site residues to determine their function. The combined modeling and mutagenesis data suggests that at position 133 threonine substitutes serine as part of the serine-tyrosine-lysine catalytic triad common to the SDR family and Glu 135 functions as an active-site base.  相似文献   

8.
J Amemura-Maekawa  E Ohtsubo 《Gene》1991,103(1):11-16
Bacterial transposon Tn3 has a 38-bp terminal inverted repeat (IR) sequence. The IR sequence has been divided into two domains, A and B, of which domain B is bound by transposase, and domain A is not Here, we defined the two domains more precisely by constructing three IR mutants with a 2-bp substitution at relevant sites within the IR sequence, followed by examination of the binding of transposase to the fragments containing these IR mutants: domain A was located at bp 1-11, whereas domain B was at bp 12-38. To see if the two domains in the IR are functionally distinct, we constructed mini-Tn3 derivatives flanked by two IRs with various 2-bp substitutions within domain A or B, and analyzed their ability to mediate cointegration. The mini-Tn3 derivatives flanked by IR(A+ B+) and IR(A- B+) [or IR(A+ B-)] and those flanked by IR(A-B+) and IR(A+ B-) mediate cointegration more efficiently than the mini-Tn3 derivatives flanked by two IR(A- B+)s or by two IR(A+ B-)s. These results and others presented here indicate that the two domains of IR are functionally distinct in promoting cointegration.  相似文献   

9.
It is widely recognized that the two major forms of GAD present in adult vertebrate brains are each composed of two major sequence domains that differ in size and degree of similarity. The amino-terminal domain is smaller and shows little sequence identity between the two forms. This domain is thought to mediate the subcellular targeting of the two GADs. Substantial parts of the amino-terminal domain appear to be exposed and flexible, as shown by proteolysis experiments and the locations of posttranslational modifications. The carboxyl-terminal sequence domain contains the catalytic site and shows substantial sequence similarity between the forms. The interaction of GAD with its cofactor, pyridoxal-5' phosphate (pyridoxal-P), plays a key role in the regulation of GAD activity. Although GAD(65) and GAD(67) interact differently with pyridoxal-P, their cofactor-binding sites contain the same set of nine putative cofactor-binding residues and have the same basic structural fold. Thus the cofactor-binding differences cannot be attributed to fundamental structural differences between the GADs but must result from subtle modifications of the basic cofactor-binding fold. The presence of another conserved motif suggests that the carboxyl-terminal domain is composed of two functional domains: the cofactor-binding domain and a small domain that closes when the substrate binds. Finally, GAD is a dimeric enzyme and conserved features of GADs superfamily of pyridoxal-P proteins indicate the dimer-forming interactions are mediated mainly by the carboxyl-terminal domain.  相似文献   

10.
The complete sequence of a beta-mannanase gene from an anaerobic extreme thermophile was determined, and it shows that the expressed protein consists of two catalytic domains and two binding domains separated by spacer regions rich in proline and threonine residues. The amino-terminal catalytic domain has beta-mannanase activity, and the carboxy-terminal domain acts as an endoglucanase. Neither domain shows homology with any other cellulase or hemicellulase sequence at the nucleic acid or protein level.  相似文献   

11.
The catalytic subunit, γ, of phosphorylase kinase contains two calmodulin-binding sequences that define a domain in γ that is homologous to the troponin-C-binding domain in troponin I. The homology is based on both sequence and functional similarities. To account for this homology, it has been proposed that the calmodulin-binding sequences in γ and the troponin-C-binding domain in troponin I have evolved from a common ancestor. We investigated this possibility by comparing the exon structure of the γ gene with that of the troponin-I gene over their homologous domains. In the quail troponin-I gene, it is known that the entire troponin-C-binding domain is encoded by a single exon. However, two exons are found to encode the calmodulin-binding domain in the γ gene from mouse. This result indicates that convergent evolution may be responsible for the sequence and functional similarities between the homologous domains in troponin I and γ.  相似文献   

12.
The human inhibitor HI-14 consists of two Kunitz-type domains covalently connected. They are liberated from the human ITI by limited tryptic proteolysis. The inhibitor HI-14 is formed via a trypsin inhibitor complex. We have reported the amino acid sequences of the domain with antitryptic activity and the homologous domain without activity. Here we present the sequence of the domains as present in ITI. The domain lacking antitryptic activity is the N-terminal part of the inhibitor HI-14, whereas the domain with antitryptic activity represents the C-terminal part of HI-14 and probably the C-terminus of the ITI-molecule, too.  相似文献   

13.
Nucleotide sugar transporters play a central role in the process of glycosylation. They are responsible for the translocation of nucleotide sugars from the cytosol, their site of synthesis, into the Golgi apparatus where the activated sugars serve as substrates for a variety of glycosyltransferases. We and others have recently identified and cloned the first GDP-fucose transporters of H. sapiens and C. elegans. Based on sequence similarity, we could identify a putative homolog in Drosophila melanogaster showing about 45% identity on protein level. The gene (CG9620) encodes a highly hydrophobic, multi-transmembrane spanning protein of 38.1 kDa that is localized in the Golgi apparatus. In order to test whether this protein serves as a GDP-fucose transporter, we performed complementation studies with fibroblasts from a patient with LADII (leukocyte adhesion deficiency II) which exhibit a strong reduction of fucosylation due to a point mutation in the human GDP-fucose transporter gene. We show that transient transfection of these cells with the Drosophila CG9620 cDNA corrects the GDP-fucose transport defect and reestablishes fucosylation. This study gives experimental proof that the product of the in silico identified Drosophila gene CG9620 serves as a functional GDP-fucose transporter.  相似文献   

14.
We reported earlier that the yeast cytochrome c1 presequence (length: 61 amino acids) directs attached proteins to the mitochondrial intermembrane space and that it appears to contain two functional domains: a 'matrix-targeting' domain, and a 'sorting' domain. We have now used gene manipulation together with two different in vivo import assays to map these two domains within the cytochrome c1 presequence. The 'matrix-targeting' domain is contained within the N-terminal 16 residues (or less); by itself, it directs attached proteins to the matrix. The 'sorting' domain extends into the C-terminal 13 residues of the presequence; while it does not mediate intracellular protein transport by itself, it acts together with the preceding 'matrix-targeting' sequence in sorting attached proteins into the intermembrane space. On replacing the authentic 'matrix-targeting' sequence with artificial sequences of different lengths we found that sorting of proteins between the outer membrane and the intermembrane space is not exclusively determined by the length of the N-terminal 'matrix-targeting' sequence.  相似文献   

15.
Multiple sequence alignments of the eight glutathione (GSH) transferase homologues encoded in the genome of Escherichia coli were used to define a consensus sequence for the proteins. The consensus sequence was analyzed in the context of the three-dimensional structure of the gst gene product (EGST) obtained from two different crystal forms of the enzyme. The enzyme consists of two domains. The N-terminal region (domain I) has a thioredoxin-like alpha/beta-fold, while the C-terminal domain (domain II) is all alpha-helical. The majority of the consensus residues (12/17) reside in the N-terminal domain. Fifteen of the 17 residues are involved in hydrophobic core interactions, turns, or electrostatic interactions between the two domains. The results suggest that all of the homologues retain a well-defined group of structural elements both in and between the N-terminal alpha/beta domain and the C-terminal domain. The conservation of two key residues for the recognition motif for the gamma-glutamyl-portion of GSH indicates that the homologues may interact with GSH or GSH analogues such as glutathionylspermidine or alpha-amino acids. The genome context of two of the homologues forms the basis for a hypothesis that the b2989 and yibF gene products are involved in glutathionylspermidine and selenium biochemistry, respectively.  相似文献   

16.
Civera C  Simon B  Stier G  Sattler M  Macias MJ 《Proteins》2005,58(2):354-366
Pleckstrin1 is a major substrate for protein kinase C in platelets and leukocytes, and comprises a central DEP (disheveled, Egl-10, pleckstrin) domain, which is flanked by two PH (pleckstrin homology) domains. DEP domains display a unique alpha/beta fold and have been implicated in membrane binding utilizing different mechanisms. Using multiple sequence alignments and phylogenetic tree reconstructions, we find that 6 subfamilies of the DEP domain exist, of which pleckstrin represents a novel and distinct subfamily. To clarify structural determinants of the DEP fold and to gain further insight into the role of the DEP domain, we determined the three-dimensional structure of the pleckstrin DEP domain using heteronuclear NMR spectroscopy. Pleckstrin DEP shares main structural features with the DEP domains of disheveled and Epac, which belong to different DEP subfamilies. However, the pleckstrin DEP fold is distinct from these structures and contains an additional, short helix alpha4 inserted in the beta4-beta5 loop that exhibits increased backbone mobility as judged by NMR relaxation measurements. Based on sequence conservation, the helix alpha4 may also be present in the DEP domains of regulator of G-protein signaling (RGS) proteins, which are members of the same DEP subfamily. In pleckstrin, the DEP domain is surrounded by two PH domains. Structural analysis and charge complementarity suggest that the DEP domain may interact with the N-terminal PH domain in pleckstrin. Phosphorylation of the PH-DEP linker, which is required for pleckstrin function, could regulate such an intramolecular interaction. This suggests a role of the pleckstrin DEP domain in intramolecular domain interactions, which is distinct from the functions of other DEP domain subfamilies found so far.  相似文献   

17.
18.

Background

The synthesis of eukaryotic N-glycans and the rhizobia Nod factor both involve α1,6-fucosylation. These fucosylations are catalyzed by eukaryotic α1,6-fucosyltransferase, FUT8, and rhizobial enzyme, NodZ. The two enzymes have similar enzymatic properties and structures but display different acceptor specificities: FUT8 and NodZ prefer N-glycan and chitooligosaccharide, respectively. This study was conducted to examine the fucosylation of chitooligosaccharides by FUT8 and NodZ and to characterize the resulting difucosylated chitooligosaccharides in terms of their resistance to hydrolysis by glycosidases.

Methods

The issue of whether FUT8 or NodZ catalyzes the further fucosylation of chitooligosaccharides that had first been monofucosylated by the other. The oligosaccharide products from the successive reactions were analyzed by normal-phase high performance liquid chromatography, mass spectrometry and nuclear magnetic resonance. The effect of difucosylation on sensitivity to glycosidase digestion was also investigated.

Results

Both FUT8 and NodZ are able to further fucosylate the monofucosylated chitooligosaccharides. Structural analyses of the resulting oligosaccharides showed that the reducing terminal GlcNAc residue and the third GlcNAc residue from the non-reducing end are fucosylated via α1,6-linkages. The difucosylation protected the oligosaccharides from extensive degradation to GlcNAc by hexosamidase and lysozyme, and also even from defucosylation by fucosidase.

Conclusions

The sequential actions of FUT8 and NodZ on common substrates effectively produce site-specific-difucosylated chitooligosaccharides. This modification confers protection to the oligosaccharides against various glycosidases.

General significance

The action of a combination of eukaryotic and bacterial α1,6-fucosyltransferases on chitooligosaccharides results in the formation of difucosylated products, which serves to stabilize chitooligosaccharides against the action of glycosidases.  相似文献   

19.
20.
Lactadherin, a glycoprotein secreted by a variety of cell types, contains two EGF domains and two C domains with sequence homology to the C domains of blood coagulation proteins factor V and factor VIII. Like these proteins, lactadherin binds to phosphatidylserine (PS)-containing membranes with high affinity. We determined the crystal structure of the bovine lactadherin C2 domain (residues 1 to 158) at 2.4 A. The lactadherin C2 structure is similar to the C2 domains of factors V and VIII (rmsd of C(alpha) atoms of 0.9 A and 1.2 A, and sequence identities of 43% and 38%, respectively). The lactadherin C2 domain has a discoidin-like fold containing two beta-sheets of five and three antiparallel beta-strands packed against one another. The N and C termini are linked by a disulfide bridge between Cys1 and Cys158. One beta-turn and two loops containing solvent-exposed hydrophobic residues extend from the C2 domain beta-sandwich core. In analogy with the C2 domains of factors V and VIII, some or all of these solvent-exposed hydrophobic residues, Trp26, Leu28, Phe31, and Phe81, likely participate in membrane binding. The C2 domain of lactadherin may serve as a marker of cell surface phosphatidylserine exposure and may have potential as a unique anti-thrombotic agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号