首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Catalase in extracts of the extreme halophile Halobacterium cutirubrum exhibits up to threefold stimulation by 0.5 to 1.5 m monovalent salts and by 0.1 m divalent salts. Above these concentrations, inhibition of enzyme activity is observed. The inhibitory effect, and to some extent the stimulation, is salt-specific; the effectiveness of a salt in inhibiting enzyme activity depends on both cation and anion. Thus, the order of effectiveness is MgCl(2) > LiCl > NaCl > KCl > NH(4)Cl, and LiCl > LiNO(3) > Li(2)SO(4). The magnitude of enzyme inhibition for the salts tested is positively correlated with their molar vapor pressure depression in aqueous solution. Stimulation of enzyme activity was observed when one salt was added at its optimal concentration in the presence of inhibiting concentrations of another salt, indicating that the effect on the enzyme is not due to changing water activity but probably to enzyme-salt interaction. Aqueous solutions of ethylene glycol, glycerol, and dimethyl sulfoxide containing no ions influence enzyme activity in the same manner as do salts.  相似文献   

2.
The effects of monovalent ions on endogenous pyruvate dehydrogenase (PDH) kinase activity in purified bovine heart pyruvate dehydrogenase complex were investigated. Activity of PDH kinase was stimulated 1.9-, 1.95-, 1.65-, and 1.4-fold by 10 mM K+, Rb+, NH+4, and Cs+, respectively, whereas Na+ and Li+ had no effect on PDH kinase activity. The crystal radii of stimulatory ions were in the range of 1.33 to 1.69 A while the crystal radii of nonstimulatory ions were in the range of 0.6 to 0.94 A. Stimulation of PDH kinase by monovalent ions was not pH dependent. Protein dilution studies showed that monovalent ion stimulation was measurable within 10 s after protein addition to PDH kinase assays. Furthermore, stimulation occurred at all protein concentrations tested. At ATP concentrations from 12.5 to 25 microM, K+ and NH+4 stimulation was constant from 0 to 110 and 0 to 30 mM, respectively. At higher ATP concentrations, from 50 to 500 microM, K+ and NH+4 stimulation peaked at approximately 30 and 3 mM, respectively, and thereafter declined as the ion concentration increased. Maximal PDH kinase stimulation by K+ or NH+4 also declined as Na+ was increased from 0 to 120 mM, but at a fixed salt concentration of 120 mM, both K+ and NH+4 stimulated PDH kinase activity. Phosphopeptide analysis demonstrated that K+ and NH+4 stimulated phosphorylation at sites 1 and 2, but that site 3 phosphorylation was relatively constant under all conditions. Thiamin pyrophosphate and 5,5'-dithiobis-(2-nitrobenzoate) blocked monovalent ion stimulation half-maximally at 4 and 6 microM, respectively. However, neither thiamin pyrophosphate nor 5,5'-dithiobis-(2-nitrobenzoate) significantly inhibited PDH kinase activity in the absence of monovalent ions. The results indicate that heart PDH kinase stimulation by monovalent ions does not occur by changing the binding equilibrium between PDH and dihydrolipoyl transacetylase core. Instead, monovalent ions bind and exert their regulatory effects at or near the active site of PDH kinase.  相似文献   

3.
Binding of thyrotropin-releasing hormone (TRH) to specific receptors on membranes isolated from GH4C1 pituitary cells was inhibited by monovalent cations and guanyl nucleotides. NaCl and LiCl inhibited TRH binding by 70%, with half-maximal inhibition at 30 mM; RbCl and KCl inhibited only 10% at concentrations up to 150 mM. NaCl decreased both the apparent number and the affinity of TRH receptors and increased the rate of dissociation of TRH from both membrane and Triton X-100-solubilized receptors. Guanyl nucleotides inhibited TRH binding up to 80%, with guanyl-5'-yl imidodiphosphate (Gpp(NH)p) approximately GTP much greater than GDP approximately ATP greater than GMP. GTP and Gpp(NH)p exerted half-maximal effects at 0.3 microM and decreased receptor affinity to one-third of control but did not change receptor number. Gpp(NH)p accelerated the dissociation of TRH from membranes but not from solubilized receptors. The effects of NaCl were independent of temperature, while GTP and Gpp(NH)p were much more inhibitory at 22 degrees C (70%) than at 0 degrees C (10%). Inhibition by NaCl could be reversed by washing the membranes, and inhibition by GTP was reversed if membranes were chilled to 0 degrees C. The inhibitory effects of low concentrations of NaCl and Gpp(NH)p were additive. Neither monovalent cations nor GTP prevented the TRH-receptor complex from undergoing transformation from a state with rapid dissociation kinetics to a slower dissociating form. The results suggest that sodium ion regulates TRH binding by interacting with a site on the receptor, while guanyl nucleotides regulate TRH binding indirectly.  相似文献   

4.
Polynucleotide kinase (EC 2.7.1.78) has been purified from rat testes, and an approximately 2000-fold purification was obtained. The purified enzyme had an Mr of 38000 +/- 3800. The enzyme phosphorylated micrococcal nuclease-treated calf thymus DNA and (dT)10 while 5'-HO-tRNA was a very poor substrate. A certain degree of specificity towards purine-containing 5'-HO-nucleotides was observed. The polynucleotide kinase had an absolute requirement for a divalent cation. Both Mg2+ and Mn2+ could be used, but 10 mM MgCl2 gave optimal activity. The monovalent cations Na+, K+ and NH4+ all stimulated enzyme activity, and the optimal concentration was 0.1 M. The enzyme was inhibited by inorganic phosphate, pyrophosphate and sulphate. A 50% inhibition was obtained with 20, 0.3 and 2 mM, respectively. At 2 mM MgCl2, 1 mM spermine enhanced the enzyme activity 3-times. The apparent KATP was estimated to be 36 microM and KHO-DNA was found to be 2 microM.  相似文献   

5.
The tissue-selective binding of the two principal bioactive forms of somatostatin, somatostatin-14 (SS-14) and somatostatin-28 (SS-28), their ability to modulate cAMP-dependent and -independent regulation of post-receptor events to different degrees and the documentation of specific labelling of SS receptor subtypes with SS-28 but not SS-14 in discrete regions of rat brain suggest the existence of distinct SS-14 and SS-28 binding sites. Receptor binding of SS-14 ligands has been shown to be modulated by nucleotides and ions, but the effect of these agents on SS-28 binding has not been studied. In the present study we investigated the effects of adenine and guanine nucleotides as well as monovalent and divalent cations on rat brain SS receptors quantitated with radioiodinated analogs of SS-14 ([125I-Tyr11]SS14, referred to in this paper as SS-14) and SS-28 ([Leu8, D-Trp22, 125I-Tyr25] SS-28, referred to as LTT* SS-28) in order to determine if distinct receptor sites for SS-14 and SS-28 could be distinguished on the basis of their modulation by nucleotides and ions. GTP as well as ATP exerted a dose-dependent inhibition (over a concentration range of 10(-7)-10(-3) M) of the binding of the two radioligands. The nucleotide inhibition of binding resulted in a decrease the Bmax of the SS receptors, the binding affinity remaining unaltered. GTP (10(-4) M) decreased the Bmax of LTT* SS-28 binding sites to a greater extent than ATP (145 +/- 10 and 228 +/- 16 respectively, compared to control value of 320 +/- 20 pmol mg-1). Under identical conditions GTP was less effective than ATP in reducing the number of T* SS-14 binding sites (Bmax = 227 +/- 8 and 182 +/- 15, respectively, compared to 340 +/- 15 pmol mg-1 in the absence of nucleotides). Monovalent cations inhibited the binding of both radioligands, Li+ and Na+ inhibited the binding of T* SS-14 to a greater extent than K+. The effect of divalent cations on the other hand was varied. At low concentration (2 mM) Mg2+, Ba2+, Mn2+, Ca2+ and Co2+ augmented the binding of both T* SS-14 and LTT* SS-28, while higher than 4 mM Co2+ inhibited binding of both ligands. LTT* SS-28 binding was reduced in the presence of high concentrations of Ba2+ and Mn2+ also. Interestingly Ca2+ at higher than 10 mM preferentially inhibited LTT* SS-28 binding and increased the affinity of SS-14 but not SS-28 for LTT* SS-28 binding sites.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Spectroscopic properties of chicken iodopsin were investigated in correlation with the concentration of chloride in digitonin extracts. When chloride in the extract was depleted by extensive dialysis, chloride-depleted iodopsin (absorption maximum, 512 nm) was formed. It was converted to chloride-bound iodopsin (absorption maximum, 562 nm) by the addition of chloride in the extract. There existed an equilibrium between two forms of iodopsin with a dissociation constant of 0.8 mM chloride. The chromophore-transfer reaction from iodopsin to scotopsin or B-photopsin, the protein moiety of chicken rhodopsin or chicken blue-sensitive cone pigment, respectively, in digitonin extract was also investigated in correlation with the concentrations of chloride, other monovalent and divalent anions, and detergent. The chromophore of chloride-depleted iodopsin was easily transferred to scotopsin in the extract, resulting in formation of rhodopsin. On the other hand, chloride-bound iodopsin was fairly stable even in the presence of scotopsin, indicating that the reaction is inhibited by binding of chloride to iodopsin. The chromophore-transfer reaction to B-photopsin was also observed from chloride-depleted iodopsin but not from chloride-bound iodopsin. The reaction was observable in the 10% digitonin extract as well as in the 2% digitonin extract. The reaction was also observed when 25 mM Na2SO4 was present in the mixture instead of NaCl, but was not when 67 mM NaNO3 was present. All these facts suggest that the chloride binding site of iodopsin does not accept a divalent anion such as SO4(2+), but does accept a monovalent anion such as Cl- or NO3-, which causes inhibition of the chromophore transfer.  相似文献   

7.
Magnesium (Mg2+) increases binding of follicle-stimulating hormone (FSH) to membrane-bound receptors and increases adenylyl cyclase activity. We examined the effects of divalent and monovalent cations on FSH binding to receptors in granulosa cells from immature porcine follicles. Divalent and monovalent cations increased binding of [125I]iodo-porcine FSH (125I-pFSH). The divalent cations Mg2+, calcium (Ca2+) and manganese, (Mn2+) increased specific binding a maximum of 4- to 5-fold at added concentrations of 10 mM. Mg2+ caused a half-maximal enhancement of binding at 0.6 mM, whereas Ca2+ and Mn2+ had half-maximal effects at 0.7 mM and 0.8 mM, respectively. The monovalent cation potassium (K+) increased binding a maximum of 1.5-fold at an added concentration of 50 mM, whereas the monovalent cation (Na+) did not increase binding at any concentration tested. The difference between K+ and Na+ suggested that either enhancement of binding was not a simple ionic effect or Na+ has a negative effect that suppresses its positive effect. Ethylenediamine tetraacetic acid, a chelator of Mg2+, prevented binding of 125I-pFSH only in the presence of Mg2+, whereas pregnant mare's serum gonadotropin, a competitor with FSH for the receptor, prevented binding in both the absence and the presence of Mg2+. Guanyl-5-ylimidodiphosphate (Gpp[NH]p) inhibited binding of 125I-pFSH in the absence or presence of Mg2+, but only at Gpp(NH)p concentrations greater than 1 mM. We used Mg2+ to determine if divalent cations enhanced FSH binding by increasing receptor affinity or by increasing the apparent number of binding sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The hammerhead cleavage reaction in monovalent cations   总被引:10,自引:3,他引:7       下载免费PDF全文
Recently, Murray et al. (Chem Biol, 1998, 5:587-595) found that the hammerhead ribozyme does not require divalent metal ions for activity if incubated in high (> or =1 M) concentrations of monovalent ions. We further characterized the hammerhead cleavage reaction in the absence of divalent metal. The hammerhead is active in a wide range of monovalent ions, and the rate enhancement in 4 M Li+ is only 20-fold less than that in 10 mM Mg2+. Among the Group I monovalent metals, rate correlates in a log-linear manner with ionic radius. The pH dependence of the reaction is similar in 10 mM Mg2+, 4 M Li+, and 4 M Na+. The exchange-inert metal complex Co(NH3)3+ also supports substantial hammerhead activity. These results suggest that a metal ion does not act as a base in the reaction, and that the effects of different metal ions on hammerhead cleavage rates primarily reflect structural contributions to catalysis.  相似文献   

9.
Sodium and other monovalent cations (added as chloride salts) inhibited adenylate cyclase of luteinized rat ovary. Sodium chloride (150 mM) inhibited basal enzyme activity by 20%. Sodium chloride inhibition was enhanced to 34-54% under conditions of enzyme stimulation by guanine nucleotides (GTP and its nonhydrolyzable analog 5'-guanylyl imidodiphosphate), fluoride anion, and agonists (ovine luteinizing hormone (oLH) and the beta-adrenergic catecholamine isoproterenol) acting at stimulatory receptors linked to adenylate cyclase. Sodium chloride inhibition was dependent on salt concentration over a wide range (25-800 mM) as well as the concentrations of GTP and oLH. Inhibition by NaCl was of rapid onset and appeared to be reversible. The order of inhibitory potency of monovalent cations was Li+ greater than Na+ greater than K+. The role of individual components of adenylate cyclase in the inhibitory action of monovalent cations was examined. Exotoxins of Vibrio cholerae and Bordetella pertussis were used to determine respectively the involvement of the stimulatory and inhibitory guanine nucleotide-binding regulatory components (Ns and Ni) in NaCl inhibition. Sodium chloride inhibited cholera toxin-activated adenylate cyclase activity by 29%. Ni did not appear to mediate cation inhibition of adenylate cyclase because pertussis toxin did not attenuate inhibition by NaCl. Enzyme stimulation by agents (forskolin and Mn2+) thought to activate the catalytic component directly was not inhibited by NaCl but was instead significantly enhanced. Sodium chloride (150 mM) increased both the Kd for high-affinity binding of oLH to 125I-human chorionic gonadotropin binding sites and the Kact for oLH stimulation of adenylate cyclase by sevenfold. In contrast, NaCl had no appreciable effect on either isoproterenol binding to (-)-[125I]iodopindolol binding sites or the Kact for isoproterenol stimulation of adenylate cyclase. The results suggest that in luteinized rat ovary monovalent cations uncouple, or dissociate, Ns from the catalytic component and, in a distinct action, reduce gonadotropin receptor affinity for hormone. Dissociation of the inhibitory influence of Ni from direct catalytic activation could account for NaCl enhancement of forskolin- and Mn2+-associated activities. On the basis of these results, the spectrum of divergent stimulatory and inhibitory effects of monovalent cations on adenylate cyclase activities in a variety of tissues may be interpreted in terms of differential enzyme susceptibilities to cation-induced uncoupling of N and catalytic component functions.  相似文献   

10.
Perrotta AT  Been MD 《Biochemistry》2006,45(38):11357-11365
Activity of the two ribozymes from hepatitis delta virus in monovalent salts was examined and compared to activity in Mg2+. Both ribozymes self-cleaved in high concentrations of monovalent cations, and an active site cytosine was required for cleavage activity under those conditions. Cleavage rates were 30-50-fold higher for reactions in LiCl than for reactions in NaCl or NH4Cl, and a thio effect indicated that chemistry was rate-determining for cleavage of the HDV genomic ribozyme in LiCl. Still, in LiCl, there was a more than 100-fold increase in the rate when MgCl2 was included in the reaction. However, the pH-rate profiles for the reactions in LiCl with and without MgCl2 were both bell-shaped with the pH optima in the neutral range. These findings support the idea that monovalent cations can partially substitute for divalent metal ions in the HDV ribozymes, although a divalent metal ion is more effective in supporting catalysis. The absence of a dramatic change in the general shape of pH-rate profiles in LiCl, relative to the profile for reactions including Mg2+, is in contrast to earlier data for the reactions in NaCl and limits our interpretation of the specific role played by the divalent metal ion in the catalytic mechanism.  相似文献   

11.
Abstract— The effects of monovalent and divalent anions on the choline acetyltransferase reaction have been determined at high (5.0 mM) and low (0.58 mM) choline. At 0.58 mM-choline, both monovalent and divalent anions activate the enzyme ±9 fold; however, at 5.0mM-choline, monovalent anions activate the enzyme ±25 fold, while divalent anions activate ±9 fold. Both monovalent and divalent anions show uncompetitive activation with respect to choline. When either dimethylaminoethanol, N -(2-hydroxyethyl)- N -methyl piperidinium iodide, or N -(2-hydroxyethyl)- N -propyl pyrrolidinium iodide was substituted for choline, activation by monovalent or divalent anions was only 2.5-4 fold. With AcCoA as substrate the ChA reaction can be increased ±20 fold by increased salts; however, with acetyl dephosphoCoA as substrate, the reaction is insensitive to the salt concentration. Similar salt effects on the ChA reaction, as measured in the direction of acetylcholine synthesis, have been demonstrated in the reverse reaction. In addition, inhibition of the forward reaction by acetylcholine has been measured as a function of sodium chloride concentration. Although the K1 for acetylcholine increases with increasing salt, this change in K 1, parallels the increase in the K m for choline. These results support the hypothesis that both monovalent and divalent anions activate choline acetyltransferase by the same singular mechanism; which is to increase the rate of dissociation of coenzyme A from the enzyme.  相似文献   

12.
13.
The nitrogenase enzyme complex of Methanosarcina barkeri 227 was found to be more sensitive to NaCl than previously studied molybdenum nitrogenases are, with total inhibition of activity occurring at 190 mM NaCl, compared with >600 mM NaCl for Azotobacter vinelandii and Clostridium pasteurianum nitrogenases. Na+ and K+ had equivalent effects, whereas Mg2+ was more inhibitory than either monovalent cation, even on a per-charge basis. The anion Cl- was more inhibitory than acetate was. Because M. barkeri 227 is a facultative halophile, we examined the effects of external salt on growth and diazotrophy and found that inhibition of growth was not greater with N2 than with NH4+. Cells grown with N2 and cells grown with NH4+ produced equal concentrations of alpha-glutamate at low salt concentrations and equal concentrations of Nepsilon-acetyl-beta-lysine at NaCl concentrations greater than 500 mM. Despite the high energetic cost of fixing nitrogen for these osmolytes, we obtained no evidence that there is a shift towards nonnitrogenous osmolytes during diazotrophic growth. In vitro nitrogenase enzyme assays showed that at a low concentration (approximately 100 mM) potassium glutamate enhanced activity but at higher concentrations this compound inhibited activity; 50% inhibition occurred at a potassium glutamate concentration of approximately 400 mM.  相似文献   

14.
Na+ has been implicated as a requirement for the inhibition of adenylate cyclase by hormones and neurotransmitters. This study examines effects of salt concentration on neuroblastoma plasma membranes that occur in the absence of an inhibitory hormone. The adenylate cyclase response to stimulatory agonists (GTP plus PGE1 (3), PGI2 or PGE2) was influenced by NaCl. As the [NaCl] increased to 150 mM, an increase in maximal activity and a decrease in apparent affinity was observed. At concentrations above 150 mM, NaCl decreased prostaglandin affinity and progressively decreased maximal activation. The GTP requirement was not altered by 30 or 150 mM NaCl in the presence of PGE1 or PGI2. The rate of Gpp(NH)p stimulated activity increased as the [NaCl] was increased in the assay. This increased rate was conserved when membranes activated in the presence of Gpp(NH)p and NaCl were reassayed in the absence of guanine nucleotide or salt. The salt evoked rate increase was proportionally greater at submaximal MgCl2 concentrations. The concentration requirement for Mg2+ was reduced by salt for adenylate cyclase in the presence of GTP or Gpp(NH)p. However, the enzyme stimulated by hormone exhibited a Mg2+ requirement that was low in the absence of salt and could not be further reduced by increased [NaCl]. Alternative monovalent cations (150 mM Li+, K+, Cs+, but not choline or tetramethylammonium) and anions (SO4=) substituted for NaCl. The observed effects were reversible upon washing the membranes and neither ouabain nor tetrodotoxin altered the response. These effects may result from a conformational alteration of a protein particularly sensitive to neutral salts in the assay.  相似文献   

15.
A calcium-dependent cyclic nucleotide phosphodiesterase from rat cerebrum was, in the absence of activator protein, inhibited by various monovalent cations. The inhibition was rapid, readily reversible, and concentration-dependent, with 100 mM cesium, rubidium, or potassium ion inhibiting essentially all basal enzyme activity, while 100 mM sodium or lithium ions produced only moderate inhibition. The potency of the cations in inhibiting the enzyme was Cs greater than or equal to Rb greater than K greater than Na greater than or equal to Li. Potassium ions increased the apparent Km for cyclic GMP and cyclic AMP by 3- and 5-fold, respectively. At 100 mM, the monovalent cations inhibited enzyme activated by the calcium-dependent activator by only 15 to 30%, while at 55 mM no inhibition pertained. Potassium and sodium ions at 55 mM had no effect on the calcium-independent phosphodiesterase from rat cerebrum. The results indicate that at normal intracellular concentrations of potassium ions the activity of the calcium-dependent phosphodiesterase is virtually completely dependent on the presence of calcium plus activator protein.  相似文献   

16.
1. Protein methylase II was purified from human placenta approx. 8700-fold with a yield of 14%. 2. Unlike protein methylase II from other sources, the activity of human placenta enzyme was completely inhibited by 2 mM Cu2+. Other divalent ions were without effect. 3. Human chorionic gonadotropin (HCG), immunoglobulin A and calf thymus histones served as good in vitro substrates for the enzyme, particularly HCG. 4. The Km for S-adenosyl-L-methionine and Ki for S-adenosyl-L-homocysteine were 2.08 x 10(-6) and 5.8 x 10(-7) M, respectively. 5. The protein methylase II activity in human placenta changed with gestational age, the activity at 1st and 2nd trimester being approximately twice that of term placenta.  相似文献   

17.
1. Freshly prepared microsomal fractions of the outermost cortex of guinea pig kidney show an Mg-2+-dependent ATPase activity which is partially inhibited by 100 mM NaCl, LiCl, KCl, RbCl, CsCl, NH4Cl or choline chloride. 2. If the microsomal preparation is aged by storage at 4 degrees C for 10-15 days, the Mg-2+-dependent activity shows stimulation by Na-+ and Li-+ but not by K-+, Rb-+, Cs-+, NH4-+ or choline. 3. Stimulation is similar with sodium salts of Cl-minus, HCO3-minus, CH3COO-minus, BR-minus, SO4-2-minus or methylsulphonate. 4. Stimulation is insensitive to 1 mM and 10 mM ouabain. 5. Stimulation is unaltered by the presence of 0.5 mM ethyleneglycol-bis-(beta-aminoethyl ether)N,N'-tetracetic acid. 6. Stimulation is 100% inhibited by 2 mM ethacrynic acid, a concentration which inhibits only 30% of the Mg-2+-dependent ATPase and 50% of the (Na-++K-+)-stimulated ATPase. 7. Some of these characteristics coincide with those of an ouabain-resistant, K-+-independent, ethacrynic acid-sensitive mode of Na-+ extrusion out of guinea pig kidney cortex cells.  相似文献   

18.
Escherichia coli RNA polymerase was assayed with 4 mM Mg2+ and 1 mM Mn2+ using native DNA, heat-denatured DNA, histone-nucleate and isolated rat liver nuclei as the template source. With purified DNA and either or both divalent metal ions, 0.1--5 mM amine stimulated enzyme activity. Spermidine resulted in the greatest stimulation (1.7-fold at 5 mM); whereas, spermine or methylglyoxal bis(guanylhydrazone) first stimulated, then above 3 mM inhibited, the reaction. The addition of unfractionated histone to purified DNA inhibited the reaction by 90%. The subsequent addition of amines resulted in a slight stimulation in incorporation (1.5-fold) in the range of 1--3 mM amine. Alternatively, when enzyme was combined with DNA before histone, only a 20% inhibition was observed and this could be completely prevented by 3 mM spermidine. The addition of amines to isolated nuclei resulted in marked alterations in ultrastructure and Mg2+ content; however, relatively small effects on RNA polymerase activity were observed. With the E. coli enzyme, 0.1--1.0 mM amine stimulated RNA synthesis (1.5-fold) whereas, none of the amines stimulated endogeneous activity in the absence or presence of 300 mM (NH4)2SO4.  相似文献   

19.
Plastidic pyruvate kinase (ATP: pyruvate phosphotransferase, EC 2.7.1.40) was purified to near homogeneity as judged by native PAGE with about 4% recovery from developing seeds of Brassica campestris using (NH4)2SO4 fractionation, DEAE-cellulose chromatography, gel filtration through Sepharose-CL-6B and affinity chromatography through reactive blue Sepharose-CL-6B. The purified enzyme having molecular mass of about 266 kDa was quite stable and showed a broad pH optimum between pH 6.8-7.8. Typical Michaelis-Menten kinetics was obtained for both the substrates with K(m) values of 0.13 and 0.14 mM for PEP and ADP, respectively. The enzyme could also utilize CDP, GDP or UDP as alternative nucleotide to ADP, but with lower Vmax and higher K(m). The enzyme had an absolute requirement for a divalent and a monovalent cation for activity and was inhibited by oxalate, fumarate, citrate, isocitrate and ATP, and activated by AMP, aspartate, 3-PGA, tryptophan and inorganic phosphate. ATP inhibited the enzyme competitively with respect to PEP and non-competitively with respect to ADP. Similarly, oxalate inhibition was also of competitive type with respect to PEP and non-competitive with respect to ADP. This inhibition by either ATP or oxalate was not due to chelation of Mg2+, as the inhibition was not relieved on increasing Mg2+ concentration even upto 30 mM. Initial velocity and product inhibition studies demonstrated the reaction mechanism to be compulsory ordered type. The enzyme seems to be regulated synergistically by ATP and citrate.  相似文献   

20.
D G Chung  P N Lewis 《Biochemistry》1986,25(18):5036-5042
Chicken histone H4, labeled separately at Met-84 with N-[[(iodoacetyl)amino]ethyl]-5-naphthylamine-1-sulfonic acid and 5-(iodoacetamido)fluorescein, was reassociated with unlabeled histones H2A, H2B, and H3 and 146 base pairs of DNA to produce fluorescently labeled nucleosomes having physical characteristics virtually the same as those of native core particles. Four types of particles were prepared containing respectively unlabeled H4, dansylated H4, fluoresceinated H4, and a mixture of the two labeled H4 molecules. Quantitative singlet-singlet energy-transfer measurements were carried out to determine changes in the distance between the two Met-84 H4 sites within the same nucleosome following conformational transitions which we have reported earlier. In the ionic strength range 0.1-100 mM NaCl, the distance between these sites is less than 2 nm except at 1 mM. Between 100 and 600 mM monovalent salt the distance separating the donor and acceptor fluors at Met-84 H4 increases to 3.8 nm. The conformational change centered around 200 mM NaCl is cooperative. Our results and those of others indicate that there is little unfolding of the histone octamer, at least around Met-84 H4, in the entire ionic strength range studied. A mechanism involving the rotation of the globular portion of H4 is proposed to account for this transition which occurs at physiological ionic strengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号