首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Peptide maps were generated of the CNBr-digested mitochondrial phosphate-transport protein and ADP/ATP carrier from bovine and rat heart, rat liver and blowfly flight muscle. Total mitochondrial proteins from the same sources plus pig heart were separated by SDS-polyacrylamide gel electrophoresis. The peptide maps and the total mitochondrial proteins were electroblotted onto nitrocellulose membranes and reacted with rabbit antisera raised against the purified bovine heart phosphate-transport protein and the ADP/ATP carrier. On the basis of antibody specificity, mobility in SDS-polyacrylamide gel electrophoresis, and peptide maps the following was concluded. Phosphate-transport protein alpha and phosphate-transport protein beta (pig and bovine heart) react equally with the first and also with the second of two independent phosphate-transport protein-antisera. Tissue-specific structural domains exist for both the phosphate-transport protein and the ADP/ATP carrier, i.e., one phosphate-transport protein-antiserum reacts with the phosphate-transport protein from all assayed sources, the other only with the cardiac phosphate-transport protein. These differences may reflect tissue-specific regulation of phosphate and adenine nucleotide transport. Homologies among the different species are found for the phosphate transport protein and the ADP/ATP carrier, except for the flight muscle ADP/ATP carrier. These conserved structural domains of the phosphate-transport protein may relate directly to catalytic activity. Alkylation of the purified phosphate-transport proteins and the ADP/ATP carriers by the transport inhibitor N-ethylmaleimide affects electrophoretic mobilities but not the antibody binding. Neither of the two phosphate-transport protein-antisera nor the ADP/ATP-carrier antiserum react with both phosphate transport protein and ADP/ATP carrier, even though these two proteins possess similarities in primary structure and function. Possible mechanisms for generating tissue-specific structural differences in the proteins are discussed.  相似文献   

3.
The metabolic function of the plastidic ATP/ADP transporter (AATP) in heterotrophic plastids was examined in transgenic potato plants that exhibited increased or decreased amounts of the protein. Altered mRNA levels correlated with activities of the plastidic ATP/ADP transporter. Potato tubers with decreased plastidic ATP/ADP transporter activities exhibited reduced starch contents whereas sense lines accumulated increased amounts of tuber starch. Starch from wild-type tubers had an amylose content of 18.8%, starch from antisense plants contained 11.5–18.0% amylose, whereas starch from sense plants had levels of 22.7–27.0%. The differences in physiological parameters were accompanied with altered tuber morphology. These changes are discussed with respect to the stromal ATP supply during starch biosynthesis.  相似文献   

4.
Recently, we have sequenced a cDNA clone from Arabidopsis thaliana L. encoding a novel putative ATP/ADP translocator (AATP1). Here, we demonstrate that the radioactively labeled AATP1 precursor protein, synthesized in vitro , is targeted to envelope membranes of isolated spinach chloroplasts. Antibodies raised against a synthetic peptide of AATP1 recognized a single polypeptide of about 62 kDa in chloroplast inner envelope preparations. The cDNA coding for the AATP1 protein was functionally expressed in Saccharomyces cerevisiae and Escherichia coli . In both expression systems, increased rates of ATP transport were observed after reconstitution of the extracted protein into proteoliposomes. To our knowledge, this is the first report on the functional expression of an intrinsic plant membrane protein in E. coli . To yield high rates of ATP transport, proteoliposomes had to be preloaded with ADP, indicating a counter-exchange mode of transport. Carboxyatractyloside did not substantially interfere with ATP transport into proteoliposomes containing the plastidic ATP/ADP translocator. An apparent KM for ATP of 28 µM was determined which is similar to values reported for isolated plastids. The data presented here strongly support the conclusion that AATP1 represents a novel eukaryotic adenylate carrier and that it is identical with the so far unknown plastidic ATP/ADP translocator.  相似文献   

5.
Ulla B. Rasmussen  Hartmut Wohlrab 《BBA》1986,852(2-3):306-314
Peptide maps were generated of the CNBr-digested mitochondrial phosphate-transport protein and ADP/ATP carrier from bovine and rat heart, rat liver and blowfly flight muscle. Total mitochondrial proteins from the same sources plus pig heart were separated by SDS-polyacrylamide gel electrophoresis. The peptide maps and the total mitochondrial proteins were electroblotted onto nitrocellulose membranes and reacted with rabbit antisera raised against the purified bovine heart phosphate-transport protein and the ADP/ATP carrier. On the basis of antibody specificity, mobility in SDS-polyacrylamide gel electrophoresis, and peptide maps the following was concluded. (1) Phosphate-transport protein and phosphate-transport protein β (pig and bovine heart) react equally with the first and also with the second of two independent phosphate-transport protein-antisera. (2) Tissue-specific structural domains exist for both the phosphate-transport protein and the ADP/ATP carrier, i.e., one phosphate-transport protein-antiserum reacts with the phosphate-transport protein from all assayed sources, the other only with the cardiac phosphate-transport protein. These differences may reflect tissue-specific regulation of phosphate and adenine nucleotide transport. (3) Homologies among the different species are found for the phosphate transport protein and the ADP/ATP carrier, except for the flight muscle ADP/ATP carrier. These conserved structural domains of the phosphate-transport protein may relate directly to catalytic activity. (4) Alkylation of the purified phosphate-transport proteins and the ADP/ATP carriers by the transport inhibitor N-ethylmaleimide affects electrophoretic mobilities but not the antibody binding. (5) Neither of the two phosphate-transport protein-antisera nor the ADP/ATP-carrier antiserum react with both phosphate transport protein and ADP/ATP carrier, even though these two proteins possess similarities in primary structure and function. Possible mechanisms for generating tissue-specific structural differences in the proteins are discussed.  相似文献   

6.
The modelling of molecule-molecule interactions has been widely accepted as a tool for drug discovery and development studies. However, this powerful technique is unappreciated in physiological and biochemical studies, where it could be extremely useful for understanding the mechanisms of action of various compounds in cases when experimental data are controversial due to complexity of the investigated systems. In this study, based on the biochemical data suggesting involvement of mitochondrial ADP/ATP carrier in K+ and H+ transport to mitochondrial matrix molecular modelling is applied to elucidate the possible interactions between the ADP/ATP carrier and its putative ligands--K(ATP) channel blockers glybenclamide, tolbutamide and 5-hydroxydecanoate. Results revealed that K(ATP) channel blockers could bind to the specific location proximal to H1, H4, H5 and H6 transmembrane helices within the cavity of the ADP/ ATP carrier. Analysis of the predicted binding site suggests that K(ATP) channel blockers could interfere with both the ADP/ATP translocation and possible cation flux through the ADP/ATP carrier, and supports the hypothesis that the ADP/ATP carrier is a target of K(ATP) channel modulators.  相似文献   

7.
Herein, we report the cloning and molecular characterization of a full cDNA encoding a putative plastidic ATP/ADP transporter, designated HtAATP, for Helianthus tuberosus L. The ATP/ADP translocator protein was isolated from the tuber-cDNA library of H. tuberosus for the first time. The predicted HtAATP protein was judged as a plastidic ATP/ADP translocator protein from its high homology at the amino acid sequence level to the two Arabidopsis thaliana plastidic ATP/ADP translocator proteins AATP1 and AATP2 (84.8% and 79.9% identity, respectively). Amino acid sequence analysis of the primary structure of HtAATP revealed that it belonged to the plastidic ATP/ADP transporter family. Hydropathy prediction indicated that HtAATP gene product is a highly hydrophobic membrane protein that contains 10 transmembrane domains to form a spanning topology. Southern blotting analysis showed that the HtAATP gene is a single-copy gene in the H. tuberosus genome. Tissue distribution analysis showed that the HtAATP gene is prominently expressed in sink tissues. A stable expression pattern in tubers at different developmental stages implies an active involvement of HtAATP during carbohydrate formation.  相似文献   

8.
The ATP-Mg/Pi carrier in liver mitochondria is activated by micromolar Ca2+ and mediates net adenine nucleotide transport into and out of the mitochondrial matrix. The purpose of this study was to characterize certain features of ATP-Mg/Pi carrier activity that are essential for understanding how the mitochondrial adenine nucleotide content is regulated. The relative importance of ATP and ADP as transport substrates was investigated using specific trap assays to measure their separate rates of carrier-mediated efflux with Pi as the external counterion. Under energized conditions ATP efflux accounted for 88% of total ATP+ADP efflux. With oligomycin present to lower the matrix ATP/ADP ratio, ATP efflux was eliminated and ADP efflux was relatively unaffected. Mg2+ was stoichiometrically required for ATP influx and is probably transported simultaneously with ATP. Ca2+ and Mn2+ could substitute for the stoichiometric Mg2+ requirement. ADP influx and Pi-induced adenine nucleotide efflux were unaffected by external Mg2+. Experiments with Pi analogues suggested that Pi is transported as the divalent anion, HPO4(2-). The results show that ATP-Mg and divalent Pi are the major transport substrates; the most probable transport mechanism for the ATP-Mg/Pi carrier is an electroneutral exchange. The results are consistent with the hypothesis that the direction and magnitude of net adenine nucleotide movements are determined mainly by the (ATP-Mg)2- and HPO4(2-) concentration gradients across the inner mitochondrial membrane.  相似文献   

9.
A novel photoactivatable radioactive ADP derivative, namely, 2-azido-3'-O-naphthoyl-[beta-(32)P]ADP (2-azido-N-[(32)P]ADP), was synthesized with the aim at mapping the substrate binding site(s) of the yeast mitochondrial ADP/ATP carrier. It was used with mitochondria isolated from genetically modified strains of Saccharomyces cerevisiae, producing the native or the His-tagged Anc2p isoform of the carrier. In darkness, 2-azido-N-[(32)P]ADP was reversibly bound to the carrier in mitochondria, without being transported. Upon photoirradiation, only the ADP/ATP carrier was covalently radiolabeled among all mitochondrial proteins. Specificity of labeling was demonstrated since carboxyatractyloside (CATR), a potent inhibitor of ADP/ATP transport, totally prevented the incorporation of the photoprobe. To localize the radioactive region(s), the purified photolabeled carrier was submitted to CNBr or hydroxylamine cleavage. The resulting fragments were characterized and identified by SDS-PAGE, Western blotting, amino acid sequencing, and MALDI-MS and ESI-MS analyses. Two short photolabeled distinct segments, eight and nine residues long, were identified: S183-R191, located in the central part of the ADP/ATP carrier; and I311-K318, belonging to its C-terminal end. Plausible models of organization of the nucleotide binding site(s) of the carrier involving the two regions specifically labeled by 2-azido-N-[(32)P]ADP are proposed.  相似文献   

10.
The mitochondrial ADP/ATP carrier plays a central role in aerobic cell energetics by providing to the cytosol the ATP generated by oxidative phosphorylation. Though discovered around 40 years ago owing to the existence of unique inhibitors and in spite of numerous experimental approaches, this carrier, which stands as a model of the mitochondrial solute carriers keeps some long-standing mystery. There are still open challenging questions among them the precise ADP/ATP transport mechanism, the functional oligomeric state of the carrier and relationships between human ADP/ATP carrier dysfunctioning and pathologies. Deciphering the 3D structure of this carrier afforded a considerable progress of the knowledge but requires now additional data focused on molecular dynamics from this static picture. State of the art in this topic is reviewed and debated in this paper in view of better comprehending origin of the discrepancies in these questions and, finally, the multiple physiological roles of this carrier in eukaryotic cell economy.  相似文献   

11.
ADP/ATP carriers in the inner mitochondrial membrane catalyze the exchange of cytosolic ADP for ATP synthesized in the mitochondrial matrix by ATP synthase and thereby replenish the eukaryotic cell with metabolic energy. The yeast ADP/ATP carrier (AAC3) was overexpressed, inhibited by atractyloside, purified, and reconstituted into two-dimensional crystals. Images of frozen hydrated crystals were recorded by electron microscopy, and a projection structure was calculated to 8-A resolution. The AAC3 molecule has pseudo 3-fold symmetry in agreement with the 3-fold sequence repeats that are typical of members of the mitochondrial carrier family. The density distribution is consistent with a bundle of six transmembrane alpha-helices with two or three short alpha-helical extensions closing the central pore on the matrix side. The AAC3 molecules in the crystal are arranged in symmetrical homo-dimers, but the translocation pore for adenine nucleotides lies in the center of the molecule and not along the dyad axis of the dimer.  相似文献   

12.
Sorting pathways of mitochondrial inner membrane proteins   总被引:14,自引:0,他引:14  
Two distinct pathways of sorting and assembly of nuclear-encoded mitochondrial inner membrane proteins are described. In the first pathway, precursor proteins that carry amino-terminal targeting signals are initially translocated via contact sites between both mitochondrial membranes into the mitochondrial matrix. They become proteolytically processed, interact with the 60-kDa heat-shock protein hsp60 in the matrix and are retranslocated to the inner membrane. The sorting of subunit 9 of Neurospora crassa F0-ATPase has been studied as an example. F0 subunit 9 belongs to that class of nuclear-encoded mitochondrial proteins which are evolutionarily derived from a prokaryotic ancestor according to the endosymbiont hypothesis. We suggest that after import into mitochondria, these proteins follow the ancestral sorting and assembly pathways established in prokaryotes (conservative sorting). On the other hand, ADP/ATP carrier was found not to require interaction with hsp60 for import and assembly. This agrees with previous findings that the ADP/ATP carrier possesses non-amino-terminal targeting signals and uses a different import receptor to other mitochondrial precursor proteins. It is proposed that the ADP/ATP carrier represents a class of mitochondrial inner membrane proteins which do not have a prokaryotic equivalent and thus appear to follow a non-conservative sorting pathway.  相似文献   

13.
The chemical synthesis of fluorescent derivatives of atractyloside (ATR), an inhibitor of the mitochondrial ADP/ATP carrier protein, is described. These derivatives are the following: 6′-O-dansyl ATR, 6′-O-dansyl-aminobutyryl ATR, and 6′-O-naphthoyl ATR. The spectral properties of these analogs were analyzed, and their biological features were compared to those of ATR. The fluorescence emission of the dansyl ATR derivatives was increased in organic solvents and that of naphthoyl ATR was decreased; for both analogs, solubilization in organic solvents resulted in a blue shift of the emission peak. The fluorescent dansyl and naphthoyl ATR derivatives were specifically recognized by the mitochondrial ADP/ATP carrier protein. Because of their spectral properties and their biochemical reactivities, the fluorescent analogs of ATR can be considered as potential probes to investigate the topography of the ADP/ATP carrier in the mitochondrial membrane and to monitor conformational changes of the ADP/ATP carrier protein associated with transport.  相似文献   

14.
The expression of mitochondrial and hydrogenosomal ADP/ATP carriers (AACs) from plants, rat and the anaerobic chytridiomycete fungus Neocallimastix spec. L2 in Escherichia coli allows a functional integration of the recombinant proteins into the bacterial cytoplasmic membrane. For AAC1 and AAC2 from rat, apparent Km values of about 40 microm for ADP, and 105 microm or 140 microm, respectively, for ATP have been determined, similar to the data reported for isolated rat mitochondria. The apparent Km for ATP decreased up to 10-fold in the presence of the protonophore m-chlorocarbonylcyanide phenylhydrazone (CCCP). The hydrogenosomal AAC isolated from the chytrid fungus Neocallimastix spec. L2 exhibited the same characteristics, but the affinities for ADP (165 microm) and ATP (2.33 mm) were significantly lower. Notably, AAC1-3 from Arabidopsis thaliana and AAC1 from Solanum tuberosum (potato) showed significantly higher external affinities for both nucleotides (10-22 microm); they were only slightly influenced by CCCP. Studies on intact plant mitochondria confirmed these observations. Back exchange experiments with preloaded E. coli cells expressing AACs indicate a preferential export of ATP for all AACs tested. This is the first report of a functional integration of proteins belonging to the mitochondrial carrier family (MCF) into a bacterial cytoplasmic membrane. The technique described here provides a relatively simple and highly reproducible method for functional studies of individual mitochondrial-type carrier proteins from organisms that do not allow the application of sophisticated genetic techniques.  相似文献   

15.
One of the major evolutionary events that transformed endosymbiotic bacterium into mitochondrion was an acquisition of ATP/ADP carrier in order to supply the host with respiration-derived ATP. Along with mitochondrial carrier, unrelated carrier is known which is characteristic of intracellular chlamydiae, plastids, parasitic intracellular eukaryote Encephalitozoon cuniculi, and the genus Rickettsia of obligate endosymbiotic alpha-Proteobacteria. This non-mitochondrial ATP/ADP carrier was recently described in rickettsia-like endosymbionts - a group of obligate intracellular bacteria, classified with the order Rickettsiales, which have diverged after free-living alpha-Proteobacteria but before sister groups of the Rickettsiaceae assemblage (true rickettsiae) and mitochondria. Published controversial phylogenetic data on the non-mitochondrial carrier were reanalysed in the present work using both DNA and protein sequences, and various methods including Bayesian analysis. The data presented are consistent with classic endosymbiont theory for the origin of mitochondria and also suggest that even last but one common ancestor of rickettsiae and organelles may have been an endosymbiotic bacterium in which ATP/ADP carrier has first originated.  相似文献   

16.
The ADP/ATP carrier of yeast (309 amino acids) is an abundant transmembrane protein of the mitochondrial inner membrane whose import involves well-defined steps (Pfanner, N., and Neupert, W. (1987) J. Biol. Chem. 262, 7528-7536). Analysis of the in vitro import of gene fusion products containing ADP/ATP carrier (AAC) sequences at the amino terminus and mouse dihydrofolate reductase (DHFR) at the carboxyl terminus indicates that the first 72 amino acids of the soluble carrier protein, a hydrophilic region of the protein, are not by themselves sufficient for initial binding to the AAC receptor on the mitochondrial surface. However, an AAC-DHFR gene fusion containing the first 111 residues of the ADP/ATP carrier protein exhibited binding to mitochondria at low temperature (2 degrees C) and internalization at 25 degrees C to a mitochondrial space protected from proteinase K in the same manner as the wild-type ADP/ATP carrier protein. The AAC-DHFR protein, in contrast to the wild-type AAC protein imported into mitochondria under optimal conditions, remained extractable at alkaline pH and appeared to be blocked at an intermediate step in the AAC import pathway. Based on its extraction properties, this AAC-DHFR hybrid is proposed to be associated with a proteinaceous component of the import apparatus within mitochondria. These data indicate that the import determinants for the AAC protein are not located at its extreme amino terminus and that protein determinants distal to the first 111 residues of the carrier may be necessary to move the protein beyond the alkali-extractable step in the biogenesis of a functional AAC protein.  相似文献   

17.
Structure-function relationships of the membrane-embedded Saccharomyces cerevisiae mitochondrial ADP/ATP carrier were investigated through two independent approaches, namely, limited proteolysis and cysteine labeling. Experiments were carried out in the presence of either carboxyatractyloside (CATR) or bongkrekic acid (BA), two specific inhibitors of the ADP/ATP transport that bind to two distinct conformers involved in the translocation process. The proteolysis approach allowed us to demonstrate (i) that N- and C-terminal extremities of ADP/ATP carrier are facing the intermembrane space and (ii) that the central region of the carrier corresponding to the matrix loop m2 is accessible to externally added trypsin in a conformation-sensitive manner, being cleaved at the Lys163-Gly164 and Lys178-Thr179 bonds in the carrier-CATR and the carrier-BA complexes, respectively. The cysteine labeling approach was carried out on the S161C mutant of the ADP/ATP carrier. This variant of the carrier is fully active, displaying nucleotide transport kinetic parameters and inhibitor binding properties similar to that of wild-type carrier. Alkylation experiments, carried out on mitochondria with the nonpermeable reagents eosin-5-maleimide and iodoacetamidyl-3,6-dioxaoctanediamine-biotin, showed that Cys 161 is accessible from the outside in the carrier-CATR complex, whereas it is masked in the carrier-BA complex. Taken together, our results indicate that the matrix loop m2 connecting the transmembrane helices H3 to H4 intrudes to some extent into the inner mitochondrial membrane. Its participation in the translocation of ADP/ATP is strongly suggested, based on the finding that its accessibility to reagents added outside mitochondria is modified according to the conformational state of the carrier.  相似文献   

18.
Trypanosoma brucei is a kinetoplastid parasite of medical and veterinary importance. Its digenetic life cycle alternates between the bloodstream form in the mammalian host and the procyclic form (PCF) in the bloodsucking insect vector, the tsetse fly. PCF trypanosomes rely in the glucose-depleted environment of the insect vector primarily on the mitochondrial oxidative phosphorylation of proline for their cellular ATP provision. We previously identified two T. brucei mitochondrial carrier family proteins, TbMCP5 and TbMCP15, with significant sequence similarity to functionally characterized ADP/ATP carriers from other eukaryotes. Comprehensive sequence analysis confirmed that TbMCP5 contains canonical ADP/ATP carrier sequence features, whereas they are not conserved in TbMCP15. Heterologous expression in the ANC-deficient yeast strain JL1Δ2Δ3u revealed that only TbMCP5 was able to restore its growth on the non-fermentable carbon source lactate. Transport studies in yeast mitochondria showed that TbMCP5 has biochemical properties and ADP/ATP exchange kinetics similar to those of Anc2p, the prototypical ADP/ATP carrier of S. cerevisiae. Immunofluorescence microscopy and Western blot analysis confirmed that TbMCP5 is exclusively mitochondrial and is differentially expressed with 4.5-fold more TbMCP5 in the procyclic form of the parasite. Silencing of TbMCP5 expression in PCF T. brucei revealed that this ADP/ATP carrier is essential for parasite growth, particularly when depending on proline for energy generation. Moreover, ADP/ATP exchange in isolated T. brucei mitochondria was eliminated upon TbMCP5 depletion. These results confirmed that TbMCP5 functions as the main ADP/ATP carrier in the trypanosome mitochondrion. The important role of TbMCP5 in the T. brucei energy metabolism is further discussed.  相似文献   

19.
The electrogenic transport of ATP and ADP by the mitochondrial ADP/ATP carrier (AAC) was investigated by recording transient currents with two different techniques for performing concentration jump experiments: 1) the fast fluid injection method: AAC-containing proteoliposomes were adsorbed to a solid supported membrane (SSM), and the carrier was activated via ATP or ADP concentration jumps. 2) BLM (black lipid membrane) technique: proteoliposomes were adsorbed to a planar lipid bilayer, while the carrier was activated via the photolysis of caged ATP or caged ADP with a UV laser pulse. Two transport modes of the AAC were investigated, ATP(ex)-0(in) and ADP(ex)-0(in). Liposomes not loaded with nucleotides allowed half-cycles of the ADP/ATP exchange to be studied. Under these conditions the AAC transports ADP and ATP electrogenically. Mg(2+) inhibits the nucleotide transport, and the specific inhibitors carboxyatractylate (CAT) and bongkrekate (BKA) prevent the binding of the substrate. The evaluation of the transient currents yielded rate constants of 160 s(-1) for ATP and >/=400 s(-1) for ADP translocation. The function of the carrier is approximately symmetrical, i.e., the kinetic properties are similar in the inside-out and right-side-out orientations. The assumption from previous investigations, that the deprotonated nucleotides are exclusively transported by the AAC, is supported by further experimental evidence. In addition, caged ATP and caged ADP bind to the carrier with similar affinities as the free nucleotides. An inhibitory effect of anions (200-300 mM) was observed, which can be explained as a competitive effect at the binding site. The results are summarized in a transport model.  相似文献   

20.
Mitochondrial carrier proteins are embedded in the inner mitochondrial membrane and ensure the transport of many important metabolites. The ADP/ATP carrier imports ADP into the mitochondrial matrix in exchange for ATP after synthesis. It is the most studied mitochondrial carrier and its structure was the first to be unraveled at high resolution. The structure reveals six transmembrane helices forming a tightly closed bundle toward the matrix and a funnel-shaped cavity opening toward the intermembrane space. The cavity ends in a narrow pit 10A from the matrix. The analysis of residues located in the cavity hints at the mechanism of binding of adenine nucleotides. Additionally, the presence of conserved proline residues in three sharply kinked helices suggests a translocation mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号