首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Mouse C4 lactate dehydrogenase treated in the dark with pyridoxal 5'-phosphate at pH8.7 and 25 degrees C loses activity gradually; 1mM-pyridoxal 5'-phosphate causes 83% inactivation, and higher concentrations of the reagent cause no further loss of activity. 2. The final extent of inactivation is very pH-dependent, greater inactivation occurring at the high pH values. 3. Inactivation may be fully reversed by addition of cysteine, or made permanent by reducing the enzyme with NaBH4. 4. The absorption spectrum of inactivated reduced enzyme indicates modification of lysine residues. Inactivation by 80% corresponds to modification of at least 1.8 mol of lysine/mol of enzyme subunit. 5. There is no loss of free thiol groups after inactivation with pyridoxal 5'-phosphate and reduction of the enzyme. 6. NAD+ or NADH gives complete protection against inactivation. protection studies with coenzyme fragments indicate that the AMP moiety is largely responsible for the protective effect. Lactate (10 mM) gives no protection in the absence of added nucleotides, but greatly enhances the protection given by ADP-ribose (1 mM). Thus ADP-ribose is able to trigger the binding of lactate. 7. Pyridoxal 5'-phosphate also acts as a non-covalent inhibitor of mouse C4 lactate dehydrogenase. The inhibition is non-competitive with respect to both NAD+ and lactate. 8. Km values for the enzyme at pH 8.0 and 25 degrees C, with the non-varied substrate saturating, are 0.3 mM-lactate and 5 microM-NAD+. 9. These results are discussed and compared with pyridoxal 5'-phosphate modification of other lactate dehydrogenase isoenzymes and related dehydrogenases.  相似文献   

2.
3.
Details are recorded of the X-ray diffraction data collection, heavy atom refinement and preliminary structure refinement for two different dogfish M4 lactate dehydrogenase structures. One of these is the 2.0 Å resolution apoenzyme structure; the other is a 3.0 Å resolution abortive ternary complex. Two other ternary substrate inhibitory complexes (LDHase2: NAD: oxalate and LDHase: NADH: oxamate), isomorphous with the abortive ternary complex (LDHase: NAD-pyruvate), have also been examined. The apo-LDHase and LDHase: NAD-pyruvate structures are systematically compared to determine significant differences in their conformation. These are related to differences in structure amongst the three studied ternary complexes. These differences all occur in regions of the protein around the active site, particularly the flexible loop covering the active center pocket and the C-terminal helix αH. The changes are suggestive of a domino effect whereby the closing of the loop on binding coenzyme and substrate triggers the critical reactive residues into assuming their catalytically active positions.  相似文献   

4.
5.
Reaction of phenylglyoxal with glutamate dehydrogenase (EC 1.4.1.4), but not with glutamate synthase (EC 2.6.1.53), from Bacillus megaterium resulted in complete loss of enzyme activity. NADPH alone or together with 2-oxoglutarate provided substantial protection from inactivation by phenylglyoxal. Some 2mol of [14C]Phenylglyoxal was incorporated/mol of subunit of glutamate dehydrogenase. Addition of 1mM-NADPH decreased incorporation by 0.7mol. The Ki for phenylglyoxal was 6.7mM and Ks for competition with NADPH was 0.5mM. Complete inactivation of glutamate dehydrogenase by butane-2,3-dione was estimated by extrapolation to result from the loss of 3 of the 19 arginine residues/subunit. NADPH, but not NADH, provided almost complete protection against inactivation. Butane-2,3-dione had only a slight inactivating effect on glutamate synthase. The data suggest that an essential arginine residue may be involved in the binding of NADPH to glutamate dehydrogenase. The enzymes were inactivated by pyridoxal 5'-phosphate and this inactivation increased 3--4-fold in the borate buffer. NADPH completely prevented inactivation by pyridoxal 5'-phosphate.  相似文献   

6.
1. Lactate oxidation catalysed by pig heart lactate dehydrogenase was studied in the presence of inhibitory concentrations of pyruvate. Experimental results show the presence of an intermediate which occurs immediately after the hydride transfer step, but before the dissociation of pyruvate and the H+ produced by the reaction. The rate constant for pyruvate dissociation and the dissociation constant for pyruvate from the ternary complex differ from those obtained in pyruvate reduction experiments. 2.In single-turnover pyruvate reduction by pig heart lactate dehydrogenase at pH8.0 pyruvate can bind to the enzyme before a H+ is taken up, and the subsequent uptake of a H+ is governed by a step that is also rate-limiting for single-turnover and steady-state NADH oxidation. 3. Observation of various intermediates in the single-turnover pyruvate reduction experiments has made it possible to determine separately the dissociation constant and Km value for pyruvate at pH8.0, and also the catalytic turnover rate and Km for pyruvate under first-order conditions at different pH values. 4. Further studies on single-turnover pyruvate reduction carried out in 2H2O, or in water at low temperature, show another step which, under these conditions, is slower than that controlling H+ uptake and rate-limiting for NADH oxidation. A scheme is presented which explains these results.  相似文献   

7.
8.
9.
Isozyme M4 of pig lactate dehydrogenase (LDH-M4) catalyzes reaction of NAD-adduct formation with a nucleophylic agent that is perhaps OH--ion. The T 1/2 of the reaction is 10-30 sec at concentration NAD 2,0-10(-3) M, LDH-M4 50 gamma/ml at pH greater than 8. Initial velocity and limit of the reaction increase at high LDH-M4, NAD and OH--ion concentrations. Pyridine-3-aldehyde and 3-acetyl pyridine analogs of NAD forms fluorescent adducts too, but at OH--ion concentration approximately 0,01 of that in the case of NAD reaction. Isoelectrical point of LDH-M4 determined by isoelectrofocusing method is 8,65 +/- 0,04 pH unit.  相似文献   

10.
We present QM/MM calculations that show differences in geometries of active sites of M(4) and H(4) isoforms of human LDH ligated with oxamate, pyruvate or L-lactate. As the consequence of these differences, binding isotope effects of the methyl hydrogen atoms of pyruvate and l-lactate may be used to experimentally distinguish these isoforms. Based on the FEP calculations we argue that L-lactate is a better candidate for the experimental studies. Our calculations of energies of interactions of ligands with the active site residues provide explanation for the observed experimentally sensitivity to inhibition of the M(4) isoenzyme isoform and pinpoint the differences to interactions of the ligand with the histidine residue. We conclude that pyruvate interacts much stronger in the active site of H(4) than M(4) isoform and that the latter interactions are weaker than with water molecules in the aqueous solution.  相似文献   

11.
Gan L  Petsko GA  Hedstrom L 《Biochemistry》2002,41(44):13309-13317
Inosine 5'-monophosphate dehydrogenase (IMPDH) catalyzes the conversion of IMP to XMP with the reduction of NAD(+), which is the rate-limiting step in the biosynthesis of guanine nucleotides. IMPDH is a promising target for chemotherapy. Microbial IMPDHs differ from mammalian enzymes in their lower affinity for inhibitors such as mycophenolic acid (MPA) and thiazole-4-carboxamide adenine dinucleotide (TAD). Part of this resistance is determined by the coupling between nicotinamide and adenosine subsites in the NAD(+) binding site that is postulated to involve an active site flap. To understand the structural basis of the drug selectivity, we solved the X-ray crystal structure of the catalytic core domain of Tritrichomonas foetus IMPDH in complex with IMP and beta-methylene-TAD at 2.2 A resolution. Unlike previous structures of this enzyme, the active site loop is ordered in this complex, and the catalytic Cys319 is 3.6 A from IMP, in the same plane as the hypoxanthine ring. The active site loop forms hydrogen bonds to the carboxamide of beta-Me-TAD which suggests that NAD(+) promotes the nucleophillic attack of Cys319 on IMP. The interactions of the adenosine end of TAD are very different from those in the human enzyme, suggesting the NAD(+) site may be an exploitable target for the design of antimicrobial drugs. In addition, a new K(+) site is observed at the subunit interface. This site is adjacent to beta-Me-TAD, consistent with the link between the K(+) activation and NAD(+). However, contrary to the coupling model, the flap does not cover the adenosine subsite and remains largely disordered.  相似文献   

12.
Steric and chemical evidence had previously shown that residues Lys-7 and/or Arg-10 of bovine pancreatic RNAase A could belong to the p2 phosphate-binding subsite, adjacent to the 3' side of the main site p1. In the present work chemical modification of the enzyme with pyridoxal 5'-phosphate and cyclohexane-1,2-dione was carried out in order to identify these residues positively as part of the p2 site. The reaction with pyridoxal 5'-phosphate yields three monosubstituted derivatives, at Lys-1, Lys-7 and Lys-41. A strong decrease in the yield of derivatives at Lys-7 and Lys-41 was observed when either p1 or p2 was specifically blocked by 5'-AMP or 3'-AMP respectively. These experiments indicate that both sites are needed for the reaction of pyridoxal 5'-phosphate with RNAase A to take place. The positive charge in one of the sites interacts with the phosphate group of pyridoxal 5'-phosphate, giving the proper orientation to the carbonyl group, which then reacts with the lysine residue present in the other site. The absence of reaction between pyridoxal 5'-phosphate and an RNAase derivative that has the p2 site blocked supports this hypothesis. Labelling of Lys-7 with pyridoxal 5'-phosphate has a more pronounced effect on the kinetics with RNA than with the smaller substrate 2',3'-cyclic CMP. In addition, when the phosphate moiety of the 5'-phosphopyridoxyl group was removed with alkaline phosphatase the kinetic constants with 2',3'-cyclic CMP returned to values very similar to those of the native enzyme, whereas a higher Km and lower Vmax. were still observed for RNA. This indicates that this new derivative has recovered a free p1 site and, hence, the capability to act on 2',3'-cyclic CMP, but the presence of the pyridoxyl group bound to Lys-7 is still blocking a secondary phosphate-binding site, namely p2. Finally, reaction of cyclohexane-1,2-dione at Arg-10 is suppressed in the presence of 3'-AMP but only a 19% decrease is observed with 5'-AMP, suggesting that Arg-10 is also close to the p2 phosphate-binding subsite.  相似文献   

13.
14.
15.
D A Kolb  G Weber 《Biochemistry》1975,14(20):4471-4476
The reciprocity of effects of two ligands simultaneously bound to a protein as a ternary complex may be proven by measurements of four standard free energies of binding. Two of these are for the binding of each ligand in the absence of the other, and the other two for the binding of each ligand in the presence of saturating amounts of the other (conditional free energies). These four quantities have been measured for the complexes of oxalate and nicotinamide adenine dinucleotide with chick heart lactate dehydrogenase. The differences between conditional and unconditional free energies are: oxalate, -1.1 +/- 0.3 kcal; NADH,-1.3 +/- 0.2 kcal, thus proving the reciprocity within experimental error.  相似文献   

16.
17.
The pyrophosphate-dependent phosphofructokinase from Propionibacterium freudenreichii is rapidly inactivated by low concentrations of pyridoxal 5'-phosphate (PLP). The inactivation is first order with respect to PLP and the rate increases linearly with PLP concentrations suggesting that over the concentration range used no significant E-PLP complex accumulates during inactivation. The rate of inactivation decreases at high and low pH and this is discussed in terms of the mechanism of Schiff base formation. The presence of any reactants decreases the rate of inactivation to 0 at infinite concentration. This protection against inactivation has been used to obtain the pH dependence of the dissociation constants of all enzyme-reactant binary complexes. Reduction of the PLP-inactivated enzyme with NaB[3H]4 indicates that about 7 lysines are modified in free enzyme and fructose 6-phosphate protects 2 of these from modification. The pH dependence of the enzyme-reactant dissociation constants suggests that the phosphates of fructose 6-phosphate, fructose 1,6-bisphosphate, inorganic phosphate, and Mg-pyrophosphate must be completely ionized and that lysines are present in the vicinity of the 1- and 6-phosphates of the sugar phosphate and bisphosphate probably directly coordinated to these phosphates.  相似文献   

18.
Ternary complexes of M4 and H4 isoenzymes of porcine lactate dehydrogenase have been crystallized, the M4 isoenzyme in space group P22121 with one half molecule per asymmetric unit, and the H4 isoenzyme in space group C2 with one whole molecule per asymmetric unit. The orientation and position of the tetramers in their unit cells have been determined by X-ray analysis. Rotation function results comparing the ternary complexes of the pig M4 isoenzyme with the known structure of the dogfish M4 enzyme not only defined the direction but also permitted recognition of the individual P, Q and R molecular 2-fold axes. The position of the molecular center was determined by placing a properly oriented dogfish M4 lactate dehydrogenase electron density into the pig muscle cell. Structure factors were calculated as the molecular center was varied along the common crystallographic and molecular 2-fold axis and compared with observed amplitudes. Precession photographs of the three major zones of the monoclinic pig H4 isoenzyme exhibited striking similarities to the corresponding zones of the orthorhombio pig M4 isoenzyme, in spite of the differences in space groups. These similarities permit the determination of approximate phases from the implied orientation and position of the pig H4 lactate dehydrogenase molecule in its monoclinic cell.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号