首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distribution of lengths of single-strand DNA in Chinese hamster ovary cells in the G1 phase of the cell cycle has been observed for various conditions of cell lysis and incubation of the lysates. The method of analysis was band sedimentation through a self-generating density gradient, a technique developed originally for the analytical ultracentrifuge, but modified here for the preparative ultracentrifuge so that measurements of sedimentation coefficients could be made under conditions that minimize shearing of the single-stranded DNA. The effect of rotor speed dependence of the sedimentation coefficient is considered in developing the relation between the sedimentation coefficient and molecular weight for this technique.Special precautions were taken to ensure that complete separation of long single strands took place upon alkaline denaturation, to preclude the possibility of anomalous sedimentation due to interstrand entanglement. Bromodeoxyuridine was incorporated into the DNA in the last round of replication. Advantage was taken of the increased sensitivity to ultraviolet irradiation for the production of single-strand breaks in DNA strands substituted with bromodeoxyuridine. After irradiation the bromodeoxyuridine-substituted strand could be completely separated from the complementary strand in alkaline sedimentation profiles without any apparent breakage in the unsubstituted strand.The conditions of lysis, chosen to minimize the degradation of DNA in the lysates, included lysis at pH 9.3 with Pronase and lysis at high pH (10.8 and 12.0). Sedimentation analysis was performed at various time intervals after incubation at 4 °C or 37 °C. Lysis and incubation at pH 12.0 produced a continuous single-strand breakdown of the DNA in the lysate. Analysis of the sedimentation profiles indicates that these alkaline-induced breaks are randomly distributed. However, lysis and incubation at pH 10.8 and at pH 9.3 with Pronase produced stable sedimentation profiles with number-average molecular weights of 1.7 × 108 and 6.0 × 107, respectively. Analysis of the single-strand DNA sedimentation profiles for these lysates indicates that the distribution of lengths of single-stranded DNA is non-random, i.e. that the distributions may represent regular subunits of chromosomal DNA structure. Suggestive evidence is presented that the approximately 60-μm units are structurally alternated in the two chains. The possible origin of the discontinuities between the subunits is also discussed.  相似文献   

2.
Summary Pulse-labeled daughter DNA of UV-irradiated Chinese hamster V79 cells was denatured in alkaline or neutral conditions and analysed by sucrose gradient centrifugation. A comparison of the sedimentation profiles of DNA treated in alkaline or neutral conditions has shown that in UV-irradiated cells some alkali-labile sites are produced during replication of damaged templates.  相似文献   

3.
4.
Biochemical and physiochemical properties of recombinant human antithrombin III were examined. This protein, produced in Chinese hamster ovary cells, showed a conformation apparently identical with the natural product isolated from human plasma when examined by circular dichroism, UV absorbance, and fluorescence spectroscopy. Comparison of the NH2-terminal sequences of recombinant and human plasma-derived antithrombin III showed that on synthesis and secretion of the recombinant protein from Chinese hamster ovary cells the signal peptide is correctly cleaved by the corresponding endoplasmic signal peptidase. The recombinant antithrombin III has identical properties in heparin binding and biological activities as determined in vitro by two-dimensional immunoelectrophoresis, progressive inhibitor, and heparin cofactor assays. Analysis of the carbohydrate portion of recombinant antithrombin III synthesized in Chinese hamster ovary cells revealed glycosylation of the complex type. Characterization of the oligosaccharide chains present in the recombinant protein reveals three major fractions, A (20%), B (60%), and C (20%). Fraction A contains tri- and tetraantennary complex-type oligosaccharides, fraction B contains biantennary oligosaccharides, and fraction C partially truncated biantennary structures. Pharmacokinetic studies with recombinant and plasma-derived antithrombin III in rabbits showed that the clearance behavior of both proteins is very similar and can be described by a double exponential decrease with almost identical kinetic parameters.  相似文献   

5.
Seven cloned small circular DNA molecules from CHO cells were sequenced and examined for the presence of homologies to each other and to a number of other functional sequences present in transposable elements, retroviruses, mammalian repeat sequences, and introns. The sequences of the CHO cell circular DNA molecules did not reveal common structural features that could explain their presence in the circular DNA population. A gene bank was constructed for CHO chromosomal DNA and sequences homologous to two of the seven small circular DNA molecules were isolated and sequenced. The nucleotide sequences present at the junction of circular and chromosomal DNA suggest that a recombination process involving homologous pairing may have been involved in the generation of one, but not the other, of the two circular DNA molecules.  相似文献   

6.
Transfection of UV-hypersensitive, DNA repair-deficient Chinese hamster ovary (CHO) cell lines and parental, repair-proficient CHO cells with UV-irradiated pHaprt-1 or pSV2gpt plasmids resulted in different responses by recipient cell lines to UV damage in transfected DNA. Unlike results that have been reported for human cells, UV irradiation of transfecting DNA did not stimulate the genetic transformation of CHO recipient cells. In repair-deficient CHO cells, proportionally fewer transformants were produced with increasing UV damage than in repair-proficient cells in transfections with the UV-irradiated hamster adenine phosphoribosyltransferase (APRT) gene contained in plasmid pHaprt-1. However, transfection of CHO cells with UV-irradiated pSV2gpt resulted in neither decline in transformation frequencies in repair-deficient cell lines relative to repair-proficient cells nor stimulation of genetic transformation by UV damage in the plasmid. Blot hybridization analysis of DNA samples isolated from transformed cells showed no dramatic changes in copy number or arrangement of transfected plasmid DNA with increasing UV dose. We conclude that the responses of recipient cells to UV-damaged transfecting plasmids depend both on the type of recipient cell and the characteristics of the genetic sequence used for transfection.  相似文献   

7.
Caffeine alone causes DNA damage in Chinese hamster ovary cells   总被引:1,自引:0,他引:1  
Caffeine has been shown to enhance the lethal effect of DNA-damaging agents in mammalian cells, and the potentiation by caffeine of this effect is generally interpreted as the result of inhibition by caffeine of the repair of damaged DNA. However, the mechanism by which caffeine enhances the lethal effect of DNA-damaging agents has not yet been elucidated. During studies on the effect of caffeine on DNA repair, we found by alkaline elution analysis that caffeine alone produced DNA strand breaks or alkali labile sites in Chinese hamster ovary cells. The amount of DNA breakage or alkali labile sites depended on the concentration of caffeine. We propose that DNA breakage induced by caffeine may be involved in the enhancement of the lethal effect of DNA-damaging agents.  相似文献   

8.
《Mutation Research Letters》1995,346(4):221-230
Some chemical carcinogens localize preferentially in mitochondrial DNA (mtDNA) when compared with genomic DNA (gDNA). Here we compare the ability of cisplatin (cis-diamminedichloroplatimum[II]) to induce DNA adducts in both genomic and mtDNA of Chinese hamster ovary (CHO) cells in culture. Cytotoxicity was examined by cell survival 4, 8 and 24 h afer exposure to 50 μM cisplatin. Cisplatin-DNA adducts were measured in DNA from nuclear and mitochondrial fractions by dissociation-enhanced lanthanide fluoroimmunoassay (DELFIA), a sensitive competitive microtiter-based immunoassay utilizing antiserum elicited against cisplatin-modified DNA. An additional comparison of cisplatin-DNA binding in both compartments was performed by immunoelectron microscopy using the cisplatin-DNA antiserum and colloidal gold. DELFIA analysis of cisplatin-DNA adducts in gDNA and mtDNA showed a six-fold higher incorporation of drug into mtDNA as compared to gDNA. Morphometric studies of colloidal gold distribution in photomicrographs of CHO cells showed mtDNA to contain a four-fold higher concentration of cisplatin as compared to nuclear DNA. Therefore, both methods demonstrated a preferential binding of cisplatin to mtDNA versus gDNA.  相似文献   

9.
Six X-ray-sensitive (xrs) strains of the CHO-K1 cell line were shown to revert at a very high frequency after treatment with 5-azacytidine. This suggested that there was a methylated xrs+ gene in these strains which was structurally intact, but not expressed. The xrs strains did not complement one another, and the locus was autosomally located. In view of the frequency of their isolation and their somewhat different phenotypes, we propose that the xrs strains are mutants derived from an active wild-type gene. However, there is in addition a methylated silent gene present in the genome. Azacytidine treatment reactivated this gene. We present a model for the functional hemizygosity of mammalian cell lines, which is based on the inactivation of genes by de novo hypermethylation. In contrast to results with xrs strains, other repair-defective lines were found not to be reverted by azacytidine.  相似文献   

10.
Chinese hamster ovary cells (CHO) grown for one cycle in bromodeoxyuridine (BrdU) contain a small amount (0.5%) of unusually dense double stranded DNA. This dense DNA has been previously interpreted as being bifilarly substituted with BrdU and hence evidence that sister chromatid exchange (SCE) formation proceeds via the Holliday model of recombination. However, the amount of this dense DNA is 100 times greater than that expected based on the SCE frequency in similarly cultured CHO cells, and it is not increased by treating the cells with mitomycin C. Moreover, contrary to expectations for bifilary substituted DNA, the amount of this dense DNA is not reduced by growing BrdU-labeled cells for a second cycle in TdR. Finally, DNA isolated from CHO cells contains a minor band (0.5%) with a density 0.025 gm/cc greater than that of the main band, whether or not BrdU has been incorporated. These results call into question the identification of this unusually dense DNA as bifilarly substituted and hence its previously postulated relationship to SCE formation.  相似文献   

11.
The addition of oligosaccharide to asparagine residues of soluble and membrane-associated proteins in eukaryotic cells involves a polyisoprenoid lipid carrier, dolichol. In Chinese hamster ovary cells, the major isomer of this polyisoprenol has 19 isoprenyl units, the terminal one being saturated. Our laboratory has developed a procedure to analyze the levels and nature of the cell's dolichyl derivatives. Chinese hamster ovary cells contain predominately activated, anionic dolichol derivatives, such as oligosaccharyl pyrophosphoryldolichol, monoglycosylated phosphoryldolichols, and dolichyl phosphate. Our studies show that in growing cells there is continual synthesis of total dolichol. Also, preliminary data suggest there is no catabolism or secretion of this lipid. The level of dolichyl phosphate did not change significantly under a variety of conditions where the levels of enzyme activities utilizing dolichyl phosphate did change. These results suggested that these enzymes had access to the same pool of dolichyl phosphate and had similar Km values for this lipid.  相似文献   

12.
The initiation of DNA replication and the subsequent chain elongation were studied using Chinese hamster ovary cells synchronized at the beginning of S phase. The cells were synchronized by a combination of mitotic selection and treatment with 5-fluorodeoxyuridine (FdU). The use of this drug at a concentration of 10–5 M was found to effectively prevent the leakage of cells into S phase. Reversal of the FdU block by supplying thymidine resulted in the synchronous onset of initiation at multiple sites in each cell. The length of the nascent chains, as determined by autoradiography and velocity sedimentation in alkaline gradients, increased linearly with time during the first twenty minutes of S phase after release. — We applied these procedures to study the effects of the length of an FdU block on the number of functional origins per cell, the rate of chain growth, and the rate of DNA synthesis per cell following reversal of the block. Although no change was noted in the rate of DNA synthesis in cells held at the beginning of S phase from 10.5 to 24 h after division, the rate of chain growth decreased from 0.94 to 0.28 microns per min. This decrease indicated that the number of functional origins increased markedly with length of FdU block. The calculated number of utilized origins per cell increased from 1,900 to 5,700. We also presented arguments that 1,900 origins per cell represents the approximate number of origins utilized by any cell held at the beginning of S phase for less than 10.5 h after division.  相似文献   

13.
When exponentially growing CHO cells were deprived of arginine (Arg), cell multiplication ceased after 12 h, but initiation of DNA synthesis continued: after 48 h of starvation with continuous [3H]thymidine exposure, 85% of the population had incorporated label, as detected autoradiographically. Consideration of the distribution of exponential cells in the various cell cycle phases leads to a calculation that most cells in G1 at the time that Arg was removed, as well as those in S, engaged in some DNA synthesis during starvation. In contrast, isoleucine (Ile)-starved cells did not initiate DNA synthesis, as has been reported by others. Experiments with cells synchronized by mitotic selection confirmed this difference in Arg- and Ile- deprived behavior, but also showed that cells which underwent the mitosis leads to G1 transition during Arg starvation remained arrested in G1 (G0?). The results suggest that Arg-deprived cells continue to maintain some proliferative function(s) while Ile-deprived cells do not.  相似文献   

14.
Protein candidates for the attachment of DNA within eukaryotic cell nuclei were identified by isolating nuclear matrix proteins and determining which of those proteins co-sedimented with DNA within a 5.7 M CsCl gradient. The presence of attached nucleic acid was detected after the proteins were subjected to the denaturing conditions of isoelectric focusing/sodium dodecyl sulfate two-dimensional polyacrylamide gel electrophoresis. The attached nucleic acid was detected with silver staining, ethidium bromide, and Amido Black binding. The nucleic acid was identified as DNA based on its ability to be labeled in vitro by terminal deoxynucleotidyltransferase and DNA polymerase I (Klenow). Three proteins were identified as containing attached DNA, one of which was vimentin. The proteins had apparent Mr and pI values of 70,000, 4.3; 70,000, 5.3; and 57,000, 4.8, respectively. We propose that these proteins are within a class of nuclear proteins containing firmly attached DNA and have referred to them as DNA attachment proteins.  相似文献   

15.
16.
DNA fork displacement rates (FDR) were measured in Chinese hamster ovary (CHO) cells heated at either 43.5 degrees C or 45.5 degrees C for various times. The inhibition of fork movement rate by heat was both time and temperature dependent, i.e., 10-20 min at 43.5 degrees C or 5 min at 45.5 degrees C was required to decrease the FDR to 20-30% of the control rate of 1 micron/min. Following heating, the reduced FDR was found to be constant for at least 75 min. The observed effects of heat on reduced rates of DNA replicon initiation and chain elongation and the increase in DNA with single-stranded regions could be explained by the heat sensitivity of the FDR. Any of these alterations in the DNA replication process may lead to many opportunities for abnormal DNA and/or protein interactions to occur which ultimately may lead to the observed formation of chromosomal aberrations.  相似文献   

17.
Small polydisperse circular (spc) DNA was isolated and cloned, using BglII from Chinese hamster ovary (CHO) cells. The properties of 47 clones containing at least 43 different BglII fragments are reported. The majority of the clones probably contain entire sequences from individual spcDNA molecules. Most of the clones were homologous to sequences in CHO cell chromosomal DNA, and many were also homologous to mouse LMTK- cell chromosomal sequences. The majority of homologous CHO cell chromosomal sequences were repetitive, although a few may be single copy. Only a small fraction of cloned spcDNA molecules were present in every cell; most occurred less frequently than once in 15 cells. Localization studies indicated that at least a portion of spcDNA is associated with the nucleus in CHO cells.  相似文献   

18.
Internalization of ricin in Chinese hamster ovary cells.   总被引:6,自引:3,他引:3       下载免费PDF全文
Internalization of ricin into Chinese hamster ovary cells has been investigated. Combined treatment with galactose and pronase at 0 degrees C resulted in a complete release of surface-bound [125I]ricin into the media. Galactose-pronase-resistant cell-bound [125I]ricin represents internalized ricin molecules inside the cells. The internalization process is time, temperature, and concentration dependent. The pH optimum of internalization of ricin is about pH 7. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis has revealed that intact ricin molecules are internalized. Neither reduction nor proteolytic processing of ricin is required for the entry of ricin into Chinese hamster ovary cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号