首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work reports the first isolation and characterization of an alkaline phosphatase (AP) from a hyperthermophilic archaeon. An AP gene from Pyrococcus abyssi, a euryarchaeon isolated from a deep-sea hydrothermal vent, was cloned and the enzyme expressed in Escherichia coli. Analysis of the sequence showed conservation of the active site and structural elements of the E. coli AP. The recombinant AP was purified and characterized. Monomeric and homodimeric active forms were detected, with a monomer molecular mass of 54 kDa. Apparent optimum pH and temperature were estimated at 11.0 and 70°C, respectively. Thus far, P. abyssi AP has been demonstrated to be the most thermostable AP, with half-lives at 100 and 105°C of 18 and 5 h, respectively. Enzyme activity was found to be dependent on divalent cations: metal ion chelators inhibited activity, whereas the addition of exogenous Mg(II), Zn(II), and Co(II) increased activity. The enzyme was inhibited by inorganic phosphate, but not by molybdate and vanadate. Strong inhibitory effects were observed in the presence of thiol-reducing agents, although cysteine residues of the P. abyssi AP were not found to be incorporated within intra- or interchain disulfide bonds. In addition, P. abyssi AP was demonstrated to dephosphorylate linear DNA fragments with dephosphorylation efficiencies of 93.8 and 84.1% with regard to cohesive and blunt ends, respectively.  相似文献   

2.
Pyrococcus abyssi, a hyperthermophilic archaeon found in the vicinity of deep-sea hydrothermal vents, grows optimally at temperatures around 100 degrees C. Carbamoyl phosphate synthetase (CPSase) from this organism was cloned and sequenced. The active 34-kDa recombinant protein was overexpressed in Escherichia coli when the host cells were cotransformed with a plasmid encoding tRNA synthetases for low-frequency Escherichia coli codons. Sequence homology suggests that the tertiary structure of P. abyssi CPSase, resembling its counterpart in Pyrococcus furiosus, is closely related to the catabolic carbamate kinases and is very different from the larger mesophilic CPSases. P. furiosus CPSase and carbamate kinase form carbamoyl phosphate by phosphorylating carbamate produced spontaneously in solution from ammonia and bicarbonate. In contrast, P. abyssi CPSase has intrinsic bicarbonate-dependent ATPase activity, suggesting that the enzyme can catalyze the phosphorylation of the isosteric substrates carbamate and bicarbonate.  相似文献   

3.
Alkaline phosphatases (APs), E.C. 3.1.3.1, are non-specific phosphomonoesterases optimally active under alkaline conditions. They are classically known to be homodimeric metalloenzymes. This quaternary structure has been considered necessary for activity, although the relationship between quaternary structure and activity is not well understood. Recombinant Pyrococcus abyssi AP was previously isolated and characterized, appearing to have two active quaternary structures on native polyacrylamide gel electrophoresis: a monomer and a homodimer. The purpose of the present work was to determine the actual quaternary structure of P. abyssi AP in solution, by isolating each of the two quaternary forms and establishing the parameters governing the assembly and dissociation of the dimer. pH appeared to be an important parameter: in acidic media, the monomer/dimer ratio shifted towards monomer. Buffer composition also affected the quaternary structure: at the same pH, in potassium phosphate buffer, the two quaternary structures were observed, whereas in tris(hydroxymethyl)aminomethane hydrochloride buffer, only the dimer was observed. Metals bound to the enzyme were found to be involved in the stability of the quaternary structure. Indeed, the P. abyssi AP obtained upon removal of the metals was monomeric. Reactivation of the latter was achieved with variable efficiency. From these experiments, no active monomer could be isolated, leading the conclusion that the active form of P. abyssi AP is the homodimer.  相似文献   

4.
The hyperthermophilic bacterium Thermotoga maritima encodes a gene sharing sequence similarities with several known genes for alkaline phosphatase (AP). The putative gene was isolated and the corresponding protein expressed in Escherichia coli, with and without a predicted signal sequence. The recombinant protein showed phosphatase activity toward the substrate p-nitrophenyl-phosphate with a k(cat) of 16 s(-1) and a K(m) of 175 microM at a pH optimum of 8.0 when assayed at 25 degrees C. T. maritima phosphatase activity increased at high temperatures, reaching a maximum k(cat) of 100 s(-1), with a K(m) of 93 microM at 65 degrees C. Activity was stable at 65 degrees C for >24 h and at 90 degrees C for 5 h. Phosphatase activity was dependent on divalent metal ions, specifically Co(II) and Mg(II). Circular dichroism spectra showed that the enzyme gains secondary structure on addition of these metals. Zinc, the most common divalent metal ion required for activity in known APs, was shown to inhibit the T. maritima phosphatase enzyme at concentrations above 0.3 moles Zn: 1 mole monomer. All activity was abolished in the presence of 0.1 mM EDTA. The T. maritima AP primary sequence is 28% identical when compared with E. coli AP. Based on a structural model, the active sites are superimposable except for two residues near the E. coli AP Mg binding site, D153 and K328 (E. coli numbering) corresponding to histidine and tryptophan in T. maritima AP, respectively. Sucrose-density gradient sedimentation experiments showed that the protein exists in several quaternary forms predominated by an octamer.  相似文献   

5.
Four open reading frames encoding putative nitrilases were identified in the genomes of the hyperthermophilic archaea Pyrococcus abyssi, Pyrococcus horikoshii, Pyrococcus furiosus, and Aeropyrum pernix (growth temperature 90-100 degrees C). The nitrilase encoding genes were cloned and overexpressed in Escherichia coli. Enzymatic activity could only be detected in the case of Py. abyssi. This recombinant nitrilase was purified by heat treatment of E. coli crude extract followed by anion-exchange chromatography with a yield of 88% and a specific activity of 0.14 U/mg. The recombinant enzyme, which represents the first archaeal nitrilase, is a dimer (29.8 kDa/subunit) with an isoelectric point of pI 5.3. The nitrilase is active at a broad temperature (60-90 degrees C) and neutral pH range (pH 6.0-8.0). The recombinant enzyme is highly thermostable with a half-life of 25 h at 70 degrees C, 9 h at 80 degrees C, and 6 h at 90 degrees C. Thermostability measurements by employing circular dichroism spectroscopy and differential scanning microcalorimetry, at neutral pH, have shown that the enzyme unfolds up to 90 degrees C reversibly and has a T(m) of 112.7 degrees C. An inhibition of the enzymatic activity was observed in the presence of acetone and metal ions such as Ag(2+) and Hg(2+). The nitrilase hydrolyzes preferentially aliphatic substrates and the best substrate is malononitrile with a K(m) value of 3.47 mM.  相似文献   

6.
AP endonucleases catalyse an important step in the base excision repair (BER) pathway by incising the phosphodiester backbone of damaged DNA immediately 5' to an abasic site. Here, we report the cloning and expression of the 774 bp Mth0212 gene from the thermophilic archaeon Methanothermobacter thermautotrophicus, which codes for a putative AP endonuclease. The 30.3 kDa protein shares 30% sequence identity with exonuclease III (ExoIII) of Escherichia coli and 40% sequence identity with the human AP endonuclease Ape1. The gene was amplified from a culture sample and cloned into an expression vector. Using an E. coli host, the thermophilic protein could be produced and purified. Characterization of the enzymatic activity revealed strong binding and Mg2+-dependent nicking activity on undamaged double-stranded (ds) DNA at low ionic strength, even at temperatures below the optimum growth temperature of M. thermautotrophicus (65 degrees C). Additionally, a much faster nicking activity on AP site containing DNA was demonstrated. Unspecific incision of undamaged ds DNA was nearly inhibited at KCl concentration of approximately 0.5 M, whereas incision at AP sites was still complete at such salt concentrations. Nicked DNA was further degraded at temperatures above 50 degrees C, probably by an exonucleolytic activity of the enzyme, which was also found on recessed 3' ends of linearized ds DNA. The enzyme was active at temperatures up to 70 degrees C and, using circular dichroism spectroscopy, shown to denature at temperatures approaching 80 degrees C. Considering the high intracellular potassium ion concentration in M. thermautotrophicus, our results suggest that the characterized thermophilic enzyme acts as an AP endonuclease in vivo with similar activities as Ape1.  相似文献   

7.
Van Boxstael S  Maes D  Cunin R 《The FEBS journal》2005,272(11):2670-2683
Aspartate transcarbamylase (ATCase) (EC 2.1.3.2) from the hyperthermophilic archaeon Pyrococcus abyssi was purified from recombinant Escherichia coli cells. The enzyme has the molecular organization of class B microbial aspartate transcarbamylases whose prototype is the E. coli enzyme. P. abyssi ATCase is cooperative towards aspartate. Despite constraints imposed by adaptation to high temperature, the transition between T- and R-states involves significant changes in the quaternary structure, which were detected by analytical ultracentrifugation. The enzyme is allosterically regulated by ATP (activator) and by CTP and UTP (inhibitors). Nucleotide competition experiments showed that these effectors compete for the same sites. At least two regulatory properties distinguish P. abyssi ATCase from E. coli ATCase: (a) UTP by itself is an inhibitor; (b) whereas ATP and UTP act at millimolar concentrations, CTP inhibits at micromolar concentrations, suggesting that in P. abyssi, inhibition by CTP is the major control of enzyme activity. While V(max) increased with temperature, cooperative and allosteric effects were little or not affected, showing that molecular adaptation to high temperature allows the flexibility required to form the appropriate networks of interactions. In contrast to the same enzyme in P. abyssi cellular extracts, the pure enzyme is inhibited by the carbamyl phosphate analogue phosphonacetate; this difference supports the idea that in native cells ATCase interacts with carbamyl phosphate synthetase to channel the highly thermolabile carbamyl phosphate.  相似文献   

8.
Genome sequence comparisons among multiple species of Pyrococcus, a hyperthermophilic archaeon, revealed a linkage between a putative restriction-modification gene complex and several large genome polymorphisms/rearrangements. From a region apparently inserted into the Pyrococcus abyssi genome, a hyperthermoresistant restriction enzyme [PabI; 5'-(GTA/C)] with a novel structure was discovered. In the present work, the neighboring methyltransferase homologue, M.PabI, was characterized. Its N-terminal half showed high similarities to the M subunit of type I systems and a modification enzyme of an atypical type II system, M.AhdI, while its C-terminal half showed high similarity to the S subunit of type I systems. M.PabI expressed within Escherichia coli protected PabI sites from RsaI, a PabI isoschizomer. M.PabI, purified following overexpression, was shown to generate 5'-GTm6AC, which provides protection against PabI digestion. M.PabI was found to be highly thermophilic; it showed methylation at 95 degrees C and retained at least half the activity after 9 min at 95 degrees C. This hyperthermophilicity allowed us to obtain activation energy and other thermodynamic parameters for the first time for any DNA methyltransferases. We also determined the kinetic parameters of kcat, Km, DNA, and Km, AdoMet. The activity of M.PabI was optimal at a slightly acidic pH and at an NaCl concentration of 200 to 500 mM and was inhibited by Zn2+ but not by Mg2+, Ca2+, or Mn2+. These and previous results suggest that this unique methyltransferase and PabI constitute a type II restriction-modification gene complex that inserted into the P. abyssi genome relatively recently. As the most thermophilic of all the characterized DNA methyltransferases, M.PabI may help in the analysis of DNA methylation and its application to DNA engineering.  相似文献   

9.
The Pyrococcus abyssi aspartate transcarbamylase (ATCase) shows a high degree of structural conservation with respect to the well-studied mesophilic Escherichia coli ATCase, including the association of catalytic and regulatory subunits. The adaptation of its catalytic function to high temperature was investigated, using enzyme purified from recombinant E.coli cells. At 90 degrees C, the activity of the trimeric catalytic subunit was shown to be intrinsically thermostable. Significant extrinsic stabilization by phosphate, a product of the reaction, was observed when the temperature was raised to 98 degrees C. Comparison with the holoenzyme showed that association with regulatory subunits further increases thermostability. To provide further insight into the mechanisms of its adaptation to high temperature, the crystal structure of the catalytic subunit liganded with the analogue N-phosphonacetyl-L-aspartate (PALA) was solved to 1.8A resolution and compared to that of the PALA-liganded catalytic subunit from E.coli. Interactions with PALA are strictly conserved. This, together with the similar activation energies calculated for the two proteins, suggests that the reaction mechanism of the P.abyssi catalytic subunit is similar to that of the E.coli subunit. Several structural elements potentially contributing to thermostability were identified: (i) a marked decrease in the number of thermolabile residues; (ii) an increased number of charged residues and a concomitant increase of salt links at the interface between the monomers, as well as the formation of an ion-pair network at the protein surface; (iii) the shortening of three loops and the shortening of the N and C termini. Other known thermostabilizing devices such as increased packing density or reduction of cavity volumes do not appear to contribute to the high thermostability of the P.abyssi enzyme.  相似文献   

10.
Spontaneous and induced abasic sites in hyperthermophiles DNA have long been suspected to occur at high frequency. Here, Pyrococcus abyssi was used as an attractive model to analyse the impact of such lesions onto the maintenance of genome integrity. We demonstrated that endogenous AP sites persist at a slightly higher level in P. abyssi genome compared with Escherichia coli. Then, the two replicative DNA polymerases, PabpolB and PabpolD, were characterized in presence of DNA containing abasic sites. Both Pabpols had abortive DNA synthesis upon encountering AP sites. Under running start conditions, PabpolB could incorporate in front of the damage and even replicate to the full-length oligonucleotides containing a specific AP site, but only when present at a molar excess. Conversely, bypassing activity of PabpolD was strictly inhibited. The tight regulation of nucleotide incorporation opposite the AP site was assigned to the efficiency of the proof-reading function, because exonuclease-deficient enzymes exhibited effective TLS. Steady-state kinetics reinforced that Pabpols are high-fidelity DNA polymerases onto undamaged DNA. Moreover, Pabpols preferentially inserted dAMP opposite an AP site, albeit inefficiently. While the template sequence of the oligonucleotides did not influence the nucleotide insertion, the DNA topology could impact on the progression of Pabpols. Our results are interpreted in terms of DNA damage tolerance.  相似文献   

11.
A novel NADH-dependent glyoxylate reductase has been found in a hyperthermophilic archaeon Thermococcus litoralis DSM 5473. This is the first evidence for glyoxylate metabolism and its corresponding enzyme in hyperthermophilic archaea. NADH-dependent glyoxylate reductase was purified approximately 560-fold from a crude extract of the hyperthermophile by five successive column chromatographies and preparative PAGE. The molecular mass of the purified enzyme was estimated to be 76 kDa, and the enzyme consisted of a homodimer with a subunit molecular mass of approximately 37 kDa. The optimum pH and temperature for enzyme activity were approximately 6.5 and 90 degrees C, respectively. The enzyme was extremely thermostable; the activity was stable up to 90 degrees C. The glyoxylate reductase catalyzed the reduction of glyoxylate and hydroxypyruvate, and the relative activity for hydroxypyruvate was approximately one-quarter that of glyoxylate in the presence of NADH as an electron donor. NADPH exhibited rather low activity as an electron donor compared with NADH. The Km values for glyoxylate, hydroxypyruvate, and NADH were determined to be 0.73, 1.3 and 0.067 mM, respectively. The gene encoding the enzyme was cloned and expressed in Escherichia coli. The nucleotide sequence of the glyoxylate reductase gene was determined and found to encode a peptide of 331 amino acids with a calculated relative molecular mass of 36,807. The amino-acid sequence of the T. litoralis enzyme showed high similarity with those of probable dehydrogenases in Pyrococcus horikoshii and P. abyssi. The purification of the enzyme from recombinant E. coli was much simpler compared with that from T. litoralis; only two steps of heat treatment and dye-affinity chromatography were needed.  相似文献   

12.
This paper reports the characterization of an alkaline phosphatase (AP) from an aerobic hyperthermophilic Archaeon Aeropyrum pernix K1. The native AP was purified into homogeneity. The enzyme is predicted as a homodimeric structure with a native molecular mass of about 75 kDa and monomer of about 40 kDa. Apparent optimum pH and temperature were estimated at 10.0 and above 95°C, respectively. Magnesium ion increased both the stability and the activity of the enzyme. A. pernix AP has been demonstrated as a very thermostable AP, retaining about 76% of its activity after being incubated at 90°C for 5.5 h and 67% of its activity after being incubated at 100°C for 2.5 h, respectively, under the presence of Mg(II). Enzyme activity was increased in addition of exogenous Mg(II), Ca(II), Zn(II), and Co(II).  相似文献   

13.
The carboxylesterase, a 34 kDa monomeric enzyme, was purified from the thermoacidophilic archaeon Sulfolobus solfataricus P1. The optimum temperature and pH were 85 degrees C and 8.0, respectively. The enzyme showed remarkable thermostability: 41% of its activity remained after 5 days of incubation at 80 degrees C. In addition, the purified enzyme exhibited stability against denaturing agents, including various detergents, urea, and organic solvents. The enzyme has broad substrate specificity towards various PNP esters and short acyl chain triacylglycerols such as tributyrin (C4:0). Among the PNP esters tested, the best substrate was PNP-caprylate (C8) with Km and kcat values of 71 microM and 14,700 s(-1), respectively. The carboxylesterase gene consisted of 915 bp corresponding to 305 amino acid residues. We demonstrated that active recombinant S. solfataricus carboxylesterase could be expressed in Escherichia coli. The enzyme was identified as a serine esterase belonging to mammalian hormone-sensitive lipases (HSL) family and contained a catalytic triad composed of serine, histidine, and aspartic acid in the active site.  相似文献   

14.
1-Methyl-9H-pyrido-[3,4-b]indole (harmane) inhibits the apurinic/apyrimidinic (AP) endonuclease activity of the UV endonuclease induced by phage T4, whereas it stimulates the pyrimidine dimer-DNA glycosylase activity of that enzyme. E. coli endonuclease IV, E. coli endonuclease VI (the AP endonuclease activity associated with E. coli exonuclease III), and E. coli uracil-DNA glycosylase were not inhibited by harmane. Human fibroblast AP endonucleases I and II also were only slightly inhibited. Therefore, harmane is neither a general inhibitor of AP endonucleases, nor a general inhibitor of Class I AP endonucleases which incise DNA on the 3'-side of AP sites. However, E. coli endonuclease III and its associated dihydroxythymine-DNA glycosylase activity were both inhibited by harmane. This observation suggests that harmane may inhibit only AP endonucleases which have associated glycosylase activities.  相似文献   

15.
Phosphopantetheine adenylyltransferase (PPAT) is an essential enzyme that catalyses a rate-limiting step in coenzyme A (CoA) biosynthesis in all organisms. This study was conducted to obtain a high amount of pure, soluble, and stable PPAT from the hyperthermophilic archaeon Pyrococcus abyssi with the aim of investigating its structural characterization by NMR. Production of this enzyme from its natural gene in the Escherichia coli classical expression strain (BL21(DE3)) was not possible, most likely due to the presence of a high number of E. coli rare codons. Only a low amount of P. abyssi PPAT was previously obtained in two E. coli strains encoding tRNAs that recognize these rare E. coli codons and only by using a very rich growth medium. It was not possible to use this strategy to prepare labelled samples for the NMR study, thus another solution had to be found. Therefore, a synthetic gene encoding P. abyssi PPAT was constructed for which not only the rare codons were changed but which was also optimized to avoid other expression-limiting factors such as internal ribosome entry sites, RNA secondary structures, and DNA repeats. Gene optimization strongly increased the yield of P. abyssi PPAT in E. coli BL21(DE3) and allowed us to start the structural characterization of the enzyme. Circular dichroism and 2D NMR experiments indicate the presence of a well-ordered structure for P. abyssi PPAT and also confirm the existence of this enzyme as a monomer in solution.  相似文献   

16.
The complete genome sequence of the hyperthermophilic archaeon Pyrococcus abyssi revealed the presence of a family B DNA polymerase (Pol I) and a family D DNA polymerase (Pol II). To extend our knowledge about euryarchaeal DNA polymerases, we cloned the genes encoding these two enzymes and expressed them in Escherichia coli. The DNA polymerases (Pol I and Pol II) were purified to homogeneity and characterized. Pol I had a molecular mass of approximately 90 kDa, as estimated by SDS/PAGE. The optimum pH and Mg(2+) concentration of Pol I were 8.5-9.0 and 3 mm, respectively. Pol II is composed of two subunits that are encoded by two genes arranged in tandem on the P. abyssi genome. We cloned these genes and purified the Pol II DNA polymerase from an E. coli strain coexpressing the cloned genes. The optimum pH and Mg(2+) concentration of Pol II were 6.5 and 15-20 mm, respectively. Both P. abyssi Pol I and Pol II have associated 3'-->5' exonuclease activity although the exonuclease motifs usually found in DNA polymerases are absent in the archaeal family D DNA polymerase sequences. Sequence analysis has revealed that the small subunit of family D DNA polymerase and the Mre11 nucleases belong to the calcineurin-like phosphoesterase superfamily and that residues involved in catalysis and metal coordination in the Mre11 nuclease three-dimensional structure are strictly conserved in both families. One hypothesis is that the phosphoesterase domain of the small subunit is responsible for the 3'-->5' exonuclease activity of family D DNA polymerase. These results increase our understanding of euryarchaeal DNA polymerases and are of importance to push forward the complete understanding of the DNA replication in P. abyssi.  相似文献   

17.
The genes encoding of DNA ligases from the thermophilic archaeon Pyrococcus abyssi (PabDNA ligase) and Methanobacterium thermoautotrophicum (MthDNA ligase) were cloned and expressed in Escherichia coli. The activity of purified enzymes was studied by ligation of two oligonucleotides, one of which had preformed hairpin structure. In the used system the maximal output of reaction products for both DNA ligases was observed near 70 degrees C that is explained by substrate thermostability. At stoichiometric ratio of enzymes and substrate the output of a product reaches of plateau at 70-75% of theoretical ones. Investigated DNA ligases showed different thermostability. The half-time life of PabDNA ligase was about 60 min at 90 degrees C. MthDNA ligase was completely inactivated at this temperature during 10 min. Recombinant DNA ligases from P. abyssi and M. thermoautotrophicum possessed high stability during a storage at 4 degrees C.  相似文献   

18.
Using leucine-p-nitroanilide (Leu-pNA) as a substrate, we demonstrated aminopeptidase activity in the culture filtrates of several Pseudomonas aeruginosa strains. The aminopeptidase was partially purified by DEAE-cellulose chromatography and found to be heat stable. The apparent molecular mass of the enzyme was approximately 56 kDa; hence, it was designated AP(56). Heating (70 degrees C) of the partially purified aminopeptidase preparations led to the conversion of AP(56) to a approximately 28-kDa protein (AP(28)) that retained enzyme activity, a reaction that depended on elastase (LasB). The pH optimum for Leu-pNA hydrolysis by AP(28) was 8.5. This activity was inhibited by Zn chelators but not by inhibitors of serine- or thiol-proteases, suggesting that AP(28) is a Zn-dependent enzyme. Of several amino acid p-nitroanilide derivatives examined, Leu-pNA was the preferred substrate. The sequences of the first 20 residues of AP(56) and AP(28) were determined. A search of the P. aeruginosa genomic data base revealed a perfect match of these sequences with positions 39-58 and 273-291, respectively, in a 536-amino acid residue open reading frame predicted to encode an aminopeptidase. A search for sequence similarities with other proteins revealed 52% identity with Streptomyces griseus aminopeptidase, approximately 35% identity with Saccharomyces cerevisiae aminopeptidase Y and a hypothetical aminopeptidase from Bacillus subtilis, and 29-32% with Aeromonas caviae, Vibrio proteolyticus, and Vibrio cholerae aminopeptidases. The residues potentially involved in zinc coordination were conserved in all these proteins. Thus, P. aeruginosa aminopeptidase may belong to the same family (M28) of metalloproteases.  相似文献   

19.
The genes coding for aspartate transcarbamylase (ATCase) in the deep-sea hyperthermophilic archaeon Pyrococcus abyssi were cloned by complementation of a pyrB Escherichia coli mutant. The sequence revealed the existence of a pyrBI operon, coding for a catalytic chain and a regulatory chain, as in Enterobacteriaceae. Comparison of primary sequences of the polypeptides encoded by the pyrB and pyrI genes with those of homologous eubacterial and eukaryotic chains showed a high degree of conservation of the residues which in E. coli ATCase are involved in catalysis and allosteric regulation. The regulatory chain shows more-extensive divergence with respect to that of E. coli and other Enterobacteriaceae than the catalytic chain. Several substitutions suggest the existence in P. abyssi ATCase of additional hydrophobic interactions and ionic bonds which are probably involved in protein stabilization at high temperatures. The catalytic chain presents a secondary structure similar to that of the E. coli enzyme. Modeling of the tridimensional structure of this chain provides a folding close to that of the E. coli protein in spite of several significant differences. Conservation of numerous pairs of residues involved in the interfaces between different chains or subunits in E. coli ATCase suggests that the P. abyssi enzyme has a quaternary structure similar to that of the E. coli enzyme. P. abyssi ATCase expressed in transgenic E. coli cells exhibited reduced cooperativity for aspartate binding and sensitivity to allosteric effectors, as well as a decreased thermostability and barostability, suggesting that in P. abyssi cells this enzyme is further stabilized through its association with other cellular components.  相似文献   

20.
A newly isolated strain, 38C-2-1, produced alkaline and thermotolerant alpha-amylases and was identified as Bacillus halodurans. The enzymes were purified to homogeneity and named alpha-amylase I and II. These showed molecular masses of 105 and 75 kDa respectively and showed maximal activities at 50-60 degrees C and pH 10-11, and 42 and 38% relative activities at 30 degrees C. These results indicate that the enzymes are thermotolerant. The enzyme activity was not inhibited by a surfactant or a bleaching reagent used in detergents. A gene encoding alpha-amylase I was cloned and named amyI. Production of AmyI with a signal peptide repressed the growth of an Escherichia coli transformant. When enzyme production was induced by the addition of isopropyl beta-D(-)-thiogalactopyranoside in the late exponential growth phase, the highest enzyme yield was observed. It was 45-fold that of the parent strain 38C-2-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号