首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract A genetically modified strain of Pseudomonas fluorescens and its parent showed grossly similar decline rates following introduction into subtropical clay and sandy soils. In unplanted clay soit at pH 6.9 and 25°C, population densities declined progressively from about 108 to 103 colony forming units (cfu) g−1 dry soil over 75 days, but in unplanted sandy soil the introduced populations could not be detected after 25 days. In clay soil at pH 8.7 or 4.7, or at environmental temperature, decay rates were enhanced as compared to those at pH 6.9 and 25°C. Counts of introduced strains in clay bulk soil and in rhizosphere and rhizoplane of maize suggested that the introduced bacteria competed well with the native bacteria, and colonized the roots at about 106 cfu g−1 dry root at 25°C, over 20 days. However, rhizoplane colonization was lower at environmental temperature. The decay rate of both strains was slower in planted than in unplanted sandy soil. The population densities in the rhizosphere and rhizoplane in the sandy soil were significantly lower than those in the clay soil. Both introduced strains colonized the maize roots in both soils, using seeds coated with bacteria in 1% carboxymethyl cellulose. Introduced cells were localized at different sites along the roots of plants developing in clay soil, with higher densities in the original (near the seeds) and root hair zones as compared to the intermediate zones. No significant difference was observed between the extent of root colonization of the genetically modified strain and its parent.  相似文献   

2.
Important winter and spring varieties of hexaploid rye-wheat (triticale cvs. 6048 and 5004) were selected for study of heterotic effects on growth and ion transport in the hybrids compared to the parental species rye ( Secale cereale L. cvs. MT 77 and Sv 6970) and wheat (Triticum aestivum L. cvs. Starke II and Sonett). After 3 days germination, seedlings were grown 11 days in water culture on a complete nutrient solution diluted to 1, 25 and 50%. Intracellular influx and transport to shoots of K+, Ca2+, sulphur and phosphate were determined by using radioactive tracers (86Rb (for K+), 45Ca, 35S and 32P). Varietal differences in the parameters studied were generally small compared to differences between species. The heterotic effect on growth of rye-wheat was mainly localized to the shoots at high ionic strengths (25% and 50%). There were no heterotic effects on ion influx or transport to the shoots. Ion influx and transport characteristics in rye-wheat appear to be inherited mainly from wheat. Growth of all species on 1% medium was severely reduced. At the low ionic strength ion influx was inhibited similarly for all species, except influx of K+ (86Rb) which was higher in rye-wheat and wheat than in rye. Ion influx and transport in rye-wheat and wheat and in rye differed especially for 25% and 50% media. Rye had the highest ion influx and transport and the highest shoot/root fresh weight ratio at the high ionic strengths. To feed a comparatively large shoot, rye may compensate for a relatively small root system by efficient ion transport mechanisms.  相似文献   

3.
Herbaceous plants grown with free access to nutrients exhibit inherent differences in maximum relative growth rate (RGR) and rate of nutrient uptake. Measured rates of root respiration are higher in fast-growing species than in slow-growing ones. Fast-growing herbaceous species, however, exhibit lower rates of respiration than would be expected from their high rates of growth and nitrate uptake. We investigated why the difference in root O2 uptake between fast- and slow-growing species is relatively small. Inhibition of respiration by the build-up of CO2 in closed cuvettes, diurnal variation in respiration rates or an increasing ratio of respiratory CO2 release to O2 uptake (RQ) with increasing RGR failed to explain the relatively low root respiration rates in fast-growing grasses. Furthermore, differences in alternative pathway activity can at most only partly explain why the difference in root respiration between fast- and slow-growing grasses is relatively small. Although specific respiratory costs for maintenance of biomass are slightly higher in the fast-growing Dactylis glomerata L. than those in the slow-growing Festuca ovina L., they account for 50% of total root respiration in both species. The specific respiratory costs for ion uptake in the fast-growing grass are one-third of those in the slow-growing grass [0·41 versus 1·22 mol O2 mol (NO3)–1]. We conclude that this is the major cause of the relatively low rates of root respiration in fast-growing grasses.  相似文献   

4.
Two cultivars of wheat (Triticum aestivum L. cvs Kadett and WW 20299) were grown for 9 days with 20% relative increase in nutrient supply per day at pH 4.1. Aluminium at 50 μ M retarded the growth of roots more than that of shoots in both cultivars, thus decreasing the root/shoot ratio. The inhibition was largest in WW 20299. With long term Al treatment (9 days), Km for K+(86Rb) influx increased five times in both cultivars and Vmax decreased in WW 20299. Efflux of K+(86Rb) was little affected. When the roots were treated with aluminium for two days, only relative growth rate of roots was retarded, while growth of shoots was unaffected and influx of K+(86Rb) adjusted to the actual K+ demand of the plants. It is concluded that the effects of aluminium on K+ uptake in these wheat cultivars are not primary factors contributing to aluminium sensitivity. However, in soil with Al the demand for a comparatively high concentration of K+ to maintain an adequate K+ uptake rate, in combination with a slow growth rate of the roots, may secondarily lead to K+ deficiency in the plants.  相似文献   

5.
The rates of growth, net rate of nitrate uptake and root respiration of 24 wild species were compared under conditions of optimum nutrient supply. The relative growth rate (RGR)of the roots of these species varied between 110 and 370 mg g-1 day-1 and the net rate of nitrate uptake between 1 and 7 mmol (g root dry weight)-1 day-1. The rate of root respiration was positively correlated with the RGR of the roots. Root respiration was also calculated from the measured rate of growth and nitrate uptake, using previously determined values for the costs of maintenance, growth and ion uptake of two slow-growing species. The calculated rate of respiration was slightly lower than the measured one for slow-growing species, but twice as high as measured rates for rapid-growing species. This discrepancy was not due to a relatively smaller electron flow through the alternative pathway and, consequently, a more efficient ATP production in the fast-growing species. Neither could variation in specific costs for root growth or maintenance explain these differences. Therefore, we conclude that fast-growing species have lower specific respiratory costs for ion uptake than slow-growing ones. Due partly to these lower specific costs of nutrient uptake, the fraction of respiration that rapid-growing species spend on anion uptake is lower than that of slow-growing species, in spite of the much higher rate of ion uptake of the fast-growing ones.  相似文献   

6.
Abstract. Rates of proton extrusion and potassium (86Rb) influx by intact roots of barley ( Hordeum vulgare cvs . Fergus, Conquest and Betzes) plants were simultaneously measured in short-term (15min) experiments. The nature and extent of apparent coupling between these ion fluxes was explored by manipulating conditions of temperature, pH and cation composition and concentration during flux determinations. In addition, the influence of salt status upon these fluxes was examined. At low K+ concentrations (0.01 to 1 mol m−3), H+ efflux and K+ influx were strongly correlated in both low- and high-K+ roots, although K+: H+ exchange stoichiometries were almost consistently greater than 2:1. At higher concentrations (1 to 5 mol m−3), H+ efflux was either reduced or remained unchanged while K+ influxes increased. In the presence of Na2SO4, rates of H+ extrusion demonstrated similar cation dependence, although below 10 mol m−3 Na2SO4, H+ fluxes were generally 50% lower than in equivalent concentrations of K2SO4. These observations are considered in the context of current hypotheses regarding the mechanisms of k+/H+ exchange.  相似文献   

7.
The relationship between specific rate of respiration (respiration rate per unit root dry weight) and concentration of reduced nitrogen was examined for maize ( Zea mays L.) roots. Plants with 2 primary nodal root axes were grown for 8 days in a split-root hydroponic system in which NO-3 was supplied to both axes at 1.0 mol m−3, to one axis at 1.0 mol m−3 and the other axis at 0.0 mol m−3 or to both axes at 0.0 mol m−3 Respiration rates and root characteristics were measured at 2-day intervals. Specific rate of respiration was positively correlated in a nonlinear relationship with concentration of reduced nitrogen. The lowest specific rates of respiration occurred when neither axis received exogenous NO−3 and the concentration of reduced nitrogen in the axes was less than 9 mg g−1. The greatest rates occurred in axes that were actively absorbing NO−3 and contained more than 35 mg g−1 of reduced nitrogen. At 23 mg g−1 of reduced nitrogen, below which initiation of lateral branches was decreased by 30–50%. specific rate of respiration was 17% greater for roots actively absorbing NO−3 than for roots not absorbing NO−3 Increases in specific rate of respiration associated with concentrations of reduced nitrogen greater than 23 mg g−1 were concluded to be attributable primarily to proliferation of lateral branches.  相似文献   

8.
Field studies have shown that the addition of Zn to Cd-containing soils can help reduce accumulation of Cd in crop plants. To understand the mechanisms involved, this study used 109Cd and 65Zn to examine the transport interactions of Zn and Cd at the root cell plasma membrane of bread wheat ( Triticum aestivum L.) and durum wheat ( Triticum turgidum L. var. durum ). Results showed that Cd2+ uptake was inhibited by Zn2+ and Zn2+ uptake was inhibited by Cd2+. Concentration-dependent uptake of both Cd2+ and Zn2+ consisted of a combination of linear binding by cell walls and saturable, Michaelis-Menten influx across the plasma membrane. Saturable influx data from experiments with and without 10 µm concentrations of the corresponding inhibiting ion were converted to double reciprocal plots. The results revealed a competitive interaction between Cd2+ and Zn2+, confirming that Cd2+ and Zn2+ share a common transport system at the root cell plasma membrane in both bread and durum wheat. The study suggests that breeding or agronomic strategies that aim to decrease Cd uptake or increase Zn uptake must take into account the potential accompanying change in transport of the competing ion.  相似文献   

9.
The effects of abscisic acid (ABA) on growth, uptake and translocation of potassium ions, K+,Mg2+-ATPase activity and transpiration were investigated in young wheat ( Triticum aestivum L. cv. Martonvásári-8) plants grown at different K+ supplies. Long-term treatment with ABA (10 μ M ) reduced growth in high-K+ plants, but had less effect under low-K+ conditions. K+(86Rb) uptake was inhibited by about 70 and 40% in low- and high-K+ plants, respectively. The stimulation by K+ of the Mg2+-ATPase activity in the root microsomal fraction was lost with ABA treatment. It is suggested that the inhibitory effect of ABA on K+ uptake may be related to this effects on the K+,Mg2+-ATPase. Translocation of K+ to the shoot was inhibited in low-K+ plants only, and it was not affected in high-K+ plants. In parallel to this, ABA treatment reduced transpiration by about 50% in low-K+ plants, whereas a much smaller effect was seen in high-K+ plants. These observations suggest that the regulation by ABA of the stomatal movements is strongly counteracted by high-K+ status.  相似文献   

10.
Abstract Using a modified procedure large indigenous plasmids were detected in cells of three strains belonging to a group of phenotypically similar actinomycetes isolated from the rhizoplane and root nodules of Alnus spp. M r values of the plasmids were estimated to be about 80 · 106 and 120 · 106. The plasmid profiles of different strains of the group were found to be almost identical. This remarkable plasmid similarly is discussed in relation to the common source of isolation.  相似文献   

11.
Salt-tolerant reed plants ( Phragmites communis Trinius) and salt-sensitive rice plants ( Oryza sativa L. cv. Kinmaze) were grown in salinized nutrient solutions up to 50 m M NaCl, and growth, Na+ contents and kinetics of 22Na+ uptake and translocation were compared between the species to characterize the salt tolerance mechanisms operating in reed plants. When both plants were grown under the same salinity, Na+ contents of the shoots were lower in reed plants, although those of the roots were quite similar. The shoot base region of both species accumulated Na+ more than the leaf blades did. Sodium-22 uptake and pulse-chase experiments suggested that the lower Na+ transport rate from root to shoot could limit excessive Na+ accumulation in the reed shoot. There was a possibility that the apparently lower 22Na+ transport rate to the shoot of reed plants was due to net downward Na+ transport from shoot base to root.  相似文献   

12.
Abstract. Cultivars of hexaploid wheat ( Triticum aestivum cvs. Chinese Spring or PI 178704) and derivatives containing chromosomes from both a cultivar and a wild, salt-tolerant species ( Lophopyrum elongatum or L. ponticum ) were compared to determine differences in growth, ion transport and ion accumulation under salt-stress. Two experiments were conducted in which plants were grown under saline and non-saline conditions and harvested at various lime intervals throughout ontogeny. Under salt-stress the growth rate of the cultivars, as compared to the growth rate of the derivatives, decreased more rapidly later in development. Transport rates from root to shoot of Na+ and Cl reached higher levels in the cultivars. The cultivars accumulated more Na+ and Cl and relatively less K+ in the shoot. The K+/Na+ ratio was higher in the derivatives than in the cultivars from which they were derived. The addition of chromosomes from Lophopyrum species into wheat altered ion accumulation, growth rates, and ion transport rates from root to shoot.  相似文献   

13.
The effects of pH on the growth and the K+ (86Rb) uptake and K+ content of excised rice ( Oryza sativa L. cv. Dunghan Shali) and wheat ( Triticum aestivum L. cv. GK Szeged) roots were investigated. Rice roots responded to H+ stress with an increased K+(86Rb) influx and a decreased K+ content, suggesting an increased exchange between the cytoplasmic K+ pool and the external medium. Under the same experimental conditions wheat did not show any anomalous K+(86Rb) influx. Growth of both rice and wheat was relatively insensitive to pH between 4 to 10.  相似文献   

14.
Abstract: The feeding of the marine ciliate Euplotes mutabilis was studied using bacteria ( Vibrio natriegens ) doubly labelled with 3H-thymidine and 14C-leucine. In the presence of abundant bacteria (30 × 106 bacteria ml−1), an average Euplotes cell (initially without food vacuoles) with a protein content of 12 ng consumed 16 × 103 bacteria in the first hour and 27 × 103 bacteria over four hours, accumulating about 60% of the bacterial protein into ciliate macromolecules. Euplotes which had been starved or under-fed to reduce cell protein biomass to 7 or 9 ng consumed significantly fewer bacteria, but the gross growth efficiency for protein did not change. The rate of consumption of bacteria by large Euplotes of protein content 15 ng was initially less than that of 12 ng cells, and it decreased markedly before the end of a 4-hour experiment. Recently divided cells ingested bacteria rapidly, but showed a reduced gross growth efficiency of about 40%. At low bacterial concentrations (6 × 106 bacteria ml−1) the rates of ingestion were markedly reduced to between     and     of maximal levels; the smallest cells could not sustain feeding activity at the low prey concentration and gross growth efficiency fell from 43 to 20% during a 4-hour experiment. The strategy adopted by Euplotes in response to local fluctuations in food supply involves rapid consumption with high growth efficiency in times of plenty, but slow shrinkage without cell division to survive in times of shortage.  相似文献   

15.
Six cultivars of spring barley ( Hordeum vulgare L. cvs Salve, Nümberg II, Bomi, Risø 1508, Mona and Sv 73 608) were grown in water culture for three weeks with various combinations of mineral supply and differential roots/shoot temperatures during the growth period. Most important for growth and accumulation of N, K+, Ca2+ and Mg2+ was the mineral supply, followed by the root temperature and the choice of cultivar. Treatments with low mineral supply or low root temperature induced a uniform reduction in growth and accumulation of the ions studied. The effects of low mineral supply and low root temperature on growth and N accumulation was additive, which indicates that these factors exert their influence independently of each other.
Roots grown at 10°C were smaller and Rb+(86Rb) influx was higher than in roots grown at 20°C. It is suggested that the control of Rb+(86Rb) influx is affected by the root temperature and the age of the plants. The higher 86Rb+ (86Rb) influx into the low temperature roots could not compensate for the smaller root size. However, the lower total mineral accumulation made up for the needs of the smaller plants and cannot explain the reduction in growth.  相似文献   

16.
Nonanoic acid, which inhibits germination in several seeds, enhanced ion efflux from embryonic axes of Cicer arietinum L., especially at temperatures above 25°C. Other short chain fatty acids had little effect on germination and ion leakage. Nonanoic acid also decreased uptake of 86Rb+ and 22Na+ and increased efflux of both isotopes from the embryonic axes into the incubation solution. Fusicoccin, which stimulates early germination in C. arietinum , counteracted the effects of nonanoic acid at both 25 and 30°C. These results suggest that nonanoic acid affects the integrity of plasmalemma and other membrane systems. Nonanoic acid thus inhibits cell elongation during early germination by disturbing ion exchange and inhibiting water uptake.  相似文献   

17.
We tested the hypothesis that acclimation of foliar dark respiration to CO2 concentration and temperature is associated with adjustments in leaf structure and chemistry. Populus tremuloides Michx. , Betula papyrifera Marsh. , Larix laricina (Du Roi) K. Koch , Pinus banksiana Lamb., and Picea mariana (Mill.) B.S.P. were grown from seed in combined CO2 (370 or 580 μ mol mol–1) and temperature treatments (18/12, 24/18, or 30/24 °C). Temperature and CO2 effects were predominately independent. Specific respiration rates partially acclimated to warmer thermal environments through downward adjustment in the intercept, but not Q 10 of the temperature–response functions. Temperature acclimation of respiration was larger for conifers than broad-leaved species and was associated with pronounced reductions in leaf nitrogen concentrations in conifers at higher growth temperatures. Short-term increases in CO2 concentration did not inhibit respiration. Growth in the elevated CO2 concentration reduced leaf nitrogen and increased non-structural carbohydrate concentrations. However, for a given nitrogen concentration, respiration was higher in leaves grown in the elevated CO2 concentration, as rates increased with increasing carbohydrates. Across species and treatments, respiration rates were a function of both leaf nitrogen and carbohydrate concentrations ( R 2 = 0·71, P < 0·0001). Long-term acclimation of foliar dark respiration to temperature and CO2 concentration is largely associated with changes in nitrogen and carbohydrate concentrations.  相似文献   

18.
Abstract— Myelin, synaptosomal and mitochondrial fractions obtained from homogenates of whole mouse brain contain K+ which can exchange with 42K+ at 2º in 0·32 m -sucrose. The content and rates of exchange of K+ were greater at pH 8·2 than at 6·1. In the synaptosomal preparations, the rates of exchange and content of 42K+ and K+ declined progressively with decreasing pH.
Of the total synaptosomal K+, 95 per cent could exchange with external 42K+. At pH 7·5, 20 per cent of the K+ and 78 per cent of the Na+ appeared to reside in osmotically insensitive pools. Synaptosomal K+ at 2º was slowly displaced by NaCl (0·18 m ) and the rate of exchange between 42K+ and K+ was retarded. KCI (0·18 m ) did not readily displace endogenous Na+. Synaptosomal K+ exchanged with exogenous K+ more rapidly than with exogenous Na+.
These observations have been discussed in terms of possible roles for ion exchange as the principal means by which K+ traverses the plasma membrane at 2º.  相似文献   

19.
The K+ (86Rb+) uptake and the growth of intact wheat seedlings ( Triticum aestivum L. cv. GK Szeged) grown in 0.5 m M CaCl2 solution and of seedlings grown on wet filter paper in Petri dishes were compared under different experimental conditions. Aeroponic (AP) and hydroponic (HP) conditions brought about striking differences in the growth of the roots, whereas the shoot growth was not influenced. The dry weight of the roots was higher for the AP plants than for the HP plants. The AP grown seedlings exhibit a low rate of K+ uptake, which seems to be a passive process. The effect of 2, 4–dinitrophenol (2, 4–DNP) clearly shows the absence of an active component of the K+ uptake in roots grown in air with a high relative humidity. In plants grown under AP conditions the effect of Ca2+ on the K+ uptake is unfavourable, i.e. there is an inhibition (negative Viets effect). Results relating to the effect of 2,4–DNP suggest that the "negative Viets effect" is a feature of the passive K+ uptake. The data suggest that the AP growth conditions play a very important role in the induction and/or development of the ion transport system(s), which becomes impaired under the AP conditions.  相似文献   

20.
Abstract: Brain sodium uptake in vivo was studied using a modified intracarotid bolus injection technique in which the uptake of 22Na + was compared with that of the relatively impermeable molecule, [3H]l-glucose. At a Na + concentration of 1.4 m M , Na + uptake was 1.74 ± 0.07 times greater than l -glucose uptake. This decreased to 1.34 ± 0.04 at 140 m M Na +, indicating saturable Na + uptake. Relative Na + extraction was not affected by pH but was inhibited by amiloride ( K i= 3 ± 10−7 M ) and by 1 m M furosemide. The effects of these two inhibitors were additive. Brain uptake of 86Rb +, a K + analogue, was measured to study interaction of K + with Na + transport systems. Relative 86Rb + extraction was also inhibited by amiloride; however, it was not inhibited by furosemide. The results suggest the presence of two distinct transport systems that allow Na + to cross the luminal membrane of the brain capillary endothelial cell. These transport systems could play an important role in the movement of Na + from blood to brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号