首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract The partitioning of nitrate assimilation between root and shoot of higher plant species is indicated by the relative proportions of total plant nitrate reductase activity (NRA) in the two plant parts and the relative concentrations of nitrate and reduced N in the xylem sap. These have been collated here from the literature and temperate and tropical species compared. Both the distribution of NRA and xylem sap nitrate: reduced N indicate that the following four generalizations can be made.
  • 1 Temperate, perennial species growing in low external nitrate concentrations (about 1 mol m?3) carry out most of their nitrate assimilation in the root. As external nitrate concentration increases (in the range found in agricultural soils, 1–20 mol m?3), shoot nitrate assimilation becomes increasingly important.
  • 2 Temperate, annual legume species growing in low external nitrate concentrations carry out most of their nitrate assimilation in the root. Shoot nitrate assimilation increases in importance as external nitrate concentration is increased.
  • 3 Temperate, annual non-legume species vary greatly in their partitioning of nitrate assimilation between root and shoot when growing in low external nitrate concentrations. Regardless of the proportion carried out in the root at low external nitrate concentrations, nitrate assimilation in the shoot becomes increasingly important as external nitrate concentration is increased.
  • 4 Tropical and subtropical species, annual and perennial, carry out a substantial proportion of their nitrate assimilation in the shoot when growing in low external nitrate concentrations. The partitioning of nitrate assimilation between root and shoot remains constant as external nitrate concentration increases.
It is proposed that a greater proportion of nitrate assimilation occurs in the shoot when an increase in the rate of nitrate uptake does not induce an increase in NR level in the root. Thus, a greater proportion of the nitrate taken up remains unassimilated and is passed into the xylem. A constant partitioning of nitrate assimilation between root and shoot is achieved by balancing NR levels in the root with rates of nitrate uptake. The advantages and disadvantages of assimilating nitrate in either the root or shoot are discussed in relation to temperate and tropical habitats.  相似文献   

2.
以大田试验获得的大麦氮敏感基因型BI-45为材料,利用溶液培养方法,测定了苗期株高、根长、叶绿素含量、含氮量、谷氨酰胺合成酶和硝酸还原酶活性,以及与氮代谢相关的基因(GSI-GSl-2、GSI-3、GS2、Narl、NRT2.J、NRT2-2、NRT2-3和NRT2-4)的表达。结果表明:相对于正常供氮,氮饥饿胁迫下,BI-45根和叶中的氮素利用率提高,含氮量降低,叶绿素含量减少,根冠比增加;叶片中的谷氨酰胺合成酶活性和硝酸还原酶的活性高于根,但是,与叶中的相比,根中的谷氨酰胺合成酶活性升高及硝酸还原酶活性降低的差异性更显著;与正常供氮相比,氮饥饿处理下,根中基因傩家族,基Narl和硝酸盐转运蛋白基因NRT2家族的相对表达量皆达到显著性差异,其中GSl-I、GSl-2和NRT2-2在苗期大麦氮饥饿处理下表现尤为突出,并且在6h都有上调表达。  相似文献   

3.
Summary Woody plants growing in cerrado and forest communities of south-east Brasil were found to have low levels of nitrate reductase activity in their leaves suggesting that nitrate ions are not an important nitrogen source in these communities. Only in the leaves of species growing in areas of disturbance, such as gaps and forest margins, were high levels of nitrate reductase present. When pot-grown plants were supplied with nitrate, leaves and roots of almost all species responded by inducing increased levels of nitrate reductase. Pioneer or colonizing species exhibited highest levels of nitrate reductase and high shoot: root nitrate reductase activities. Glutamine synthetase, glutamate synthase and glutamate dehydrogenase were present in leaves and roots of the species examined.15N-labelled nitrate and ammonium were used to compare the assimilatory characteristics of two species:Enterolobium contortisiliquum, with a high capacity to reduce nitrate, andCalophyllum brasiliense, of low capacity. The rate of nitrate assimilation in the former was five times that of the latter. Both species had similar rates of ammonium assimilation. Results for eight species of contrasting habitats showed that leaf nitrogen content increased in parallel with xylem sap nitrogen concentrations, suggesting that the ability of the root system to acquire, assimilate or export nitrate determines shoot nitrogen status. These results emphasise the importance of nitrogen transport and metabolism in roots as determinants of whole plant nitrogen status.  相似文献   

4.
The wide range of plant responses to ammonium nutrition can be used to study the way ammonium interferes with plant metabolism and to assess some characteristics related with ammonium tolerance by plants. In this work we investigated the hypothesis of plant tolerance to ammonium being related with the plants’ capacity to maintain high levels of inorganic nitrogen assimilation in the roots. Plants of several species (Spinacia oleracea L., Lycopersicon esculentum L., Lactuca sativa L., Pisum sativum L. and Lupinus albus L.) were grown in the presence of distinct concentrations (0.5, 1.5, 3 and 6 mM) of nitrate and ammonium. The relative contributions of the activity of the key enzymes glutamine synthetase (GS; under light and dark conditions) and glutamate dehydrogenase (GDH) were determined. The main plant organs of nitrogen assimilation (root or shoot) to plant tolerance to ammonium were assessed. The results show that only plants that are able to maintain high levels of GS activity in the dark (either in leaves or in roots) and high root GDH activities accumulate equal amounts of biomass independently of the nitrogen source available to the root medium and thus are ammonium tolerant. Plant species with high GS activities in the dark coincide with those displaying a high capacity for nitrogen metabolism in the roots. Therefore, the main location of nitrogen metabolism (shoots or roots) and the levels of GS activity in the dark are an important strategy for plant ammonium tolerance. The relative contribution of each of these parameters to species tolerance to ammonium is assessed. The efficient sequestration of ammonium in roots, presumably in the vacuoles, is considered as an additional mechanism contributing to plant tolerance to ammonium nutrition.  相似文献   

5.
Appearance of nitrate reductase (NR, EC 1.6.6.1–3), nitrite reductase (NiR, EC 1.7.7.1) and glutamine synthetase (GS, EC 6.3.1.2) under the control of nitrate, ammonium and light was studied in roots, hypocotyls and needles (cotyledonary whorl) of the Scots pine ( Pinus sylvestris L.) seedling. It was found that appearance of NiR was mainly controlled by nitrate whereas appearance of GS was strongly controlled by light. In principle, the NR activity level showed the same dependency on nitrate and light as that of NiR. In the root, both nitrate and ammonium had a stimulatory effect on GS activity whereas in the whorl the induction was minor. The level of NiR (NR) activity is high in the root and hypocotyl and low in the cotyledonary whorl, whereas the GS activity level per organ increases strongly from the root to the whorl. Thus, in any particular organ the operation of the glutamine synthetase/glutamate synthase (GS/GOGAT) cycle is not closely connected to the operation of the nitrate reduction pathway. The strong control of GS/GOGAT by light and the minor sensitivity to induction by nitrate or ammonium indicate a major role of the GS/GOGAT cycle in reassimilation of endogeniously generated ammonium.  相似文献   

6.
Controlled-environment experiments were conducted to determine the effect of three irradiance levels obtained by artificial shading (40%, 65% and 100% light) on the growth, distribution of photosynthate, relative growth rate, net assimilation rate, respiration and nitrate reductase activities in the leaves of seedlings of Terminalia ivorensis and Terminalis superba, two important tropical tree species. Total dry weights of both species increased with increasing irradiance level during growth. Shading affected the percentage dry matter in the roots and number of leaves of both species. Relative growth rate, net assimilation rate, respiration and nitrate reductase in the leaves of both species increased with increases in irradiance level during growth. Significant differences between the species were observed in most of the parameters studied.  相似文献   

7.
M. Weber  S. Schmidt  C. Schuster  H. Mohr 《Planta》1990,180(3):429-434
The extent to which the appearances of nitrite reductase (NIR; EC 1.7.7.1) and glutamine synthetase (GS; EC 6.3.1.2) are coordinated was studied in mustard (Sinapis alba L.) seedlings. It was established by immunotitration that the increased activities of NIR and GS in the presence of light and nitrate can be attributed to the de-novo synthesis of enzyme protein. The bulk of the NIR and GS was found in the developing cotyledons. In the absence of nitrate in the growth medium there was no coordinate appearance of NIR and GS. While light strongly stimulated the appearance of GS, the level of NIR was hardly affected and remained low. On the other hand, in the presence of nitrate in the medium the appearances of NIR and GS were strictly coordinated, the GS level being considerably above that of NIR. It is argued that phytochrome-controlled synthesis of GS in the absence of nitrate is part of the mechanism to reassimilate ammonium liberated during proteolysis of storage protein and metabolism of the resulting amino acids, whereas the strictly coordinated synthesis in the presence of light and nitrate indicates the dominance of nitrate assimilation under these circumstances. The fact that the level of GS was always considerably above that of NIR appears to be a safety measure to prevent ammonium accumulation.Abbreviations FR standardized far-red light (3.5 W·m–2), to drive the high-irradiance reaction of phytochrome - GS glutamine synthetase, EC 6.3.1.2 - NIR nitrite reductase, EC 1.7.7.1 This work was supported by Heidelberger Akademie der Wissenschaften (Forschungsstelle Nitratassimilation).  相似文献   

8.
With the aims (1) to test whether the different natural occurrence of twoPlantago species in grasslands is explained by a different preference of the species for nitrate or ammonium; (2) to test whether the different occurrence is explained by differences in the flexibility of the species towards changes in the nitrogen form; (3) to find suitable parameters as a tool to study ammonium and nitrate utilization of these species at the natural sites in grasslands, plants ofPlantago lanceolata andP. major ssp.major were grown with an abundant supply of nitrate, ammonium or nitrate+ammonium as the nitrogen source (0.5 mM). The combination of ammonium and nitrate gave a slightly higher final plant weight than nitrate or ammonium alone. Ammonium lowered the shoot to root ratio inP. major. Uptake of nitrate per g root was faster than that of ammonium, but from the mixed source ammonium and nitrate were taken up at the same rate. In vivo nitrate reductase activity (NRA) was present in both shoot and roots of plants receiving nitrate. When ammonium was applied in addition to nitrate, NRA of the shoot was not affected, but in the root the activity decreased. Thus, a larger proportion of total NRA was present in the shoot than with nitrate alone. In vitro glutamate dehydrogenase activity (GDHA) was enhanced by ammonium, both in the shoot and in the roots.In vitro glutamine synthetase activity (GSA) was highest in roots of plants receiving ammonium. Both GDHA and GSA were higher inP. lanceolata than inP. major. The concentration of ammonium in the roots increased with ammonium, but it did not accumulate in the shoot. The concentration of amino acids in the roots was also enhanced by ammonium. Protein concentration was not affected by the form of nitrogen. Nitrate accumulated in both the shoot and the roots of nitrate grown plants. When nitrate in the solution was replaced by ammonium, the nitrate concentration in the roots decreased rapidly. It also decreased in the shoot, but slowly. It is concluded that the nitrogen metabolism of the twoPlantago species shows a similar response to a change in the form of the nitrogen source, and that differences in natural occurrence of these species are not related to a differential adaptation of nitrogen metabolism towards the nitrogen form. Suitable parameters for establishing the nitrogen source in the field are thein vivo NRA, nitrate concentrations in tissues and xylem exudate, and the fraction of total reduced nitrogen in the roots that is in the soluble form, and to some extent thein vitro GDHA and GSA of the roots. Grassland Species Research Group. Publ. no 118.  相似文献   

9.
10.
Plant roots under nitrogen deficient conditions with access to both ammonium and nitrate ions, will take up ammonium first. This preference for ammonium rather than nitrate emphasizes the importance of ammonium assimilation machinery in roots. Glutamine synthetase (GS) and glutamate synthase (GOGAT) catalyze the conversion of ammonium and 2‐oxoglutarate to glutamine and glutamate. Higher plants have two GOGAT species, ferredoxin‐dependent glutamate synthase (Fd‐GOGAT) and nicotinamide adenine dinucleotide (NADH)‐GOGAT. While Fd‐GOGAT participates in the assimilation of ammonium, which is derived from photorespiration in leaves, NADH‐GOGAT is highly expressed in roots and its importance needs to be elucidated. While ammonium as a minor nitrogen form in most soils is directly taken up, nitrate as the major nitrogen source needs to be converted to ammonium prior to uptake. The aim of this study was to investigate and quantify the contribution of NADH‐GOGAT to the ammonium assimilation in Arabidopsis (Arabidopsis thaliana Columbia) roots. Quantitative real‐time polymerase chain reaction (PCR) and protein gel blot analysis showed an accumulation of NADH‐GOGAT in response to ammonium supplied to the roots. In addition the localization of NADH‐GOGAT and Fd‐GOGAT did not fully overlap. Promoter–β‐glucuronidase (GUS) fusion analysis and immunohistochemistry showed that NADH‐GOGAT was highly accumulated in non‐green tissue like vascular bundles, shoot apical meristem, pollen, stigma and roots. Reverse genetic approaches suggested a reduction in glutamate production and biomass accumulation in NADH‐GOGAT transfer DNA (T‐DNA) insertion lines under normal CO2 condition. The data emphasize the importance of NADH‐GOGAT in the ammonium assimilation in Arabidopsis roots.  相似文献   

11.
To investigate the contribution of root cytosolic glutamine synthetase (GS) activity in plant biomass production, two different approaches were conducted using the model legume Lotus japonicus. In the first series of experiments, it was found that overexpressing GS activity in roots of transgenic plants leads to a decrease in plant biomass production. Using 15N labelling it was shown that this decrease is likely to be due to a lower nitrate uptake accompanied by a redistribution to the shoots of the newly absorbed nitrogen which cannot be reduced due to the lack of nitrate reductase activity in this organ. In the second series of experiments, the relationship between plant growth and root GS activity was analysed using a series of recombinant inbred lines issued from the crossing of two different Lotus ecotypes, Gifu and Funakura. It was confirmed that a negative relationship exists between root GS expression and plant biomass production in both the two parental lines and their progeny. Statistical analysis allowed it to be estimated that at least 13% of plant growth variation can be accounted for by variation in GS activity. Received: 24 September 1998 / Accepted: 14 April 1999  相似文献   

12.
13.
Glutamine synthftase (GS) activity was investigated in a nitratt limited continuous culture of the marine diatom Chaeloccros afTinis (Lauder) Hustedt before and after the perturbation of the culture medium with 10 μM of 15 N labelled nitrate. Parallel studies were carried out on nitrate reductase(NR). nitrate uptake and assimilation, and Ievels of cellular nitrogen containing compounds with the objective to determine the validity of the GS assay as a measure of nitrate utilization. Activities in N-deficient cells, grown at steady state, correlated well with uptake and assimilation rates. In N-sufftcient celts, however, during the nitrate pertirbation period, they accounted only for about 10% of the two latter rates, when ambient nitrate concentrations were high (0. 7-10 μ). It is proposed that under these growth conditions an alternative pathway via glutamate dehydrogenase (GDH) was operative. At low ambient nitrate concentrations (0.1-0.7 μM), GS activities, uptake and assimilation rates again balanced rather well. Thus, the data support the view that GDH activity is associated with high levels and GS with low levels of external or internal nitrogen.  相似文献   

14.
Changes in the activities of leaf glutamine synthetase (GS) isoforms were followed in four temperate deciduous trees from full leaf expansion to senescence (May to November). In the early part of the season, total GS activity was high in all species, with values ranging from 90 to 200 μmol h−1 g−1 fw. During this early period this activity comprised only the activity of the chloroplastic (GS2) isoform in all species. These high GS2 activities are consistent with the role of GS2 in the re-assimilation of photorespired ammonia. The early high values also coincided with high nitrate reductase activity in one of the species, the highly nitrophilous species Sambucus nigra, with values of up to 16μmol h−1 g−1 fw. This indicates that GS2 is also important in the assimilation of ammonia produced from nitrate reduction. From mid- to late-season, the cytosolic isoform (GS1) was detected in all four species and became increasingly more active in comparison to GS2. By the time of senescence it was the dominant enzyme of the two forms in both S. nigra and Carpinus betulus. The results provide strong support for recent findings that GS1 is an important enzyme for the mobilization of nitrogen for translocation or storage.  相似文献   

15.
J. Boucaud  J. Bigot 《Plant and Soil》1989,114(1):121-125
The activities of key enzymes involved in N assimilation were investigated after defoliation of 6-week-old ryegrass plants grown in water culture conditions. In a first experiment, nitrate reductase, glutamine synthetase and glutamate dehydrogenase activities were measured in roots, stubble and leaves on the day of cutting and at 7-day intervals over the following 5-week period of regrowth. Ammonia assimilation enzymes showed little change whereas the nitrate reductase activity sharply decreased 2 weeks after clipping. In a second experiment, the nitrate reductase activity was measured at 2- or 3-day intervals 1 week before and 3 weeks after clipping.In vivo andin vitro assays both showed an increasing activity in leaves up to 8 days after cutting while root activity decreased. The opposite changes then occurred and both organs recovered their initial nitrate reductase activity levels after 12–14 days of regrowth. These fluctuations in nitrate reductase activity were considered to be related to the capacity for C assimilation and the nitrate availability.  相似文献   

16.
P. lanceolata andP. major were grown in culture solutions with nitrate or ammonium as the nitrogen source. Dry matter accumulation in the shoot was faster with nitrate than with ammonium, whilst that of the roots was not affected by the nitrogen source. As a consequence, the shoot-to-root ratio was lower with ammonium than with nitrate. InP. lanceolata, dry matter percentage of shoot and root tissue was lower with nitrate nutrition, suggesting better elongation growth than with ammonium. However, in shoot tissue ofP. major the opposite was found. The rate of root respiration declined with time, and this was almost completely due to a declining activity of the alternative path, which amounted to about 30–60% of total root respiration. Respiration via the cytochrome path was for a part of time slightly increased by ammonium, whereas the activity of the alternative path was strongly enhanced. The concentration of ethanol-soluble carbohydrates (SC) in the roots of both species was higher when nitrate was used, but no difference in the concentration of starch was found. When the plants were transferred from one nitrogen source to the other, many parameters, including the concentration of nitrate and chloride, and the shoot to root ratio, adjusted to the new situation in both species. Grassland Species Research Group, Publication no. 116.  相似文献   

17.
Elongation of seminal and lateral roots of rice seedlings was markedly inhibited by high ammonium levels in growth medium. However, high exogenous nitrate concentrations had little inhibitory effect on root growth. The objective of this study was to elucidate the relationship between inhibition of rice root growth induced by high ammonium conditions and ammonium assimilation in the seedlings. Activity of glutamine synthetase (GS) was kept at a low level in the seminal roots of the seedlings grown under high nitrate levels. In contrast, high ammonium levels significantly enhanced the GS activity in the roots, so that Gln abundantly accumulated in the shoots. These results indicate that ammonium assimilation may be activated in the seminal roots under high ammonium conditions. Application of methionine sulfoximine (MSO), an inhibitor of GS, relieved the repression of the seminal root elongation induced by high ammonium concentrations. However, the elongation of lateral roots remained inhibited even under the same condition. Furthermore, MSO drastically increased ammonium level and remarkably decreased Gln level in the shoots grown under high ammonium conditions. These results show that, for rice seedlings, an assimilatory product of ammonium, and not ammonium itself, may serve as an endogenous indicator of the nitrogen status involved in the inhibition of seminal root elongation induced by high levels of exogenous ammonium.  相似文献   

18.
Role of sugars in nitrate utilization by roots of dwarf bean   总被引:4,自引:0,他引:4  
Nitrate uptake and in vivo, nitrate reductase activity (NRA) in roots of Phaseolus vulgaris, L. cv. Witte Krombek were measured in nitrogen-depleted plants of varying sugar status, Variation in sugar status was achieved at the start of nitrate nutrition by excision, ringing, darkness or administration of sugars to the root medium. The shape of the apparent induction pattern of nitrate uptake was not influenced by the sugar status of the absorbing tissue. When measured after 6 h of nitrate nutrition (0.1 mol m?3), steady state nitrate uptake and root NRA were in the order intact>dark>ringed>excised. Exogenous sucrose restored NRA in excised roots to the level of intact plants. The nitrate uptake rate of excised roots, however, was not fully restored by sucrose (0.03–300 mol m?3). When plants were decapitated after an 18 h NO3? pretreatment, the net uptake rate declined gradually to become negative after three hours. This decline was slowed down by exogenous fructose, whilst glucose rapidly (sometimes within 5 min) stimulated NG?3 uptake. Presumably due to a difference in NO3? due to a difference in NO3? uptake, the NRA of excised roots was also higher in the presence of glucose than in the presence of fructose after 6 h of nitrate nutrition. The sugar-stimulation of, oxygen consumption as well as the release of 14CO2 from freshly absorbed (U-14C) sugar was the same for glucose and fructose. Therefore, we propose a glucose-specific effect on NO3? uptake that is due to the presence of glucose rather than to its utilization in root respiration. A differential glucose-fructose effect on nitrate reductase activity independent of the effect on NO3? uptake was not indicated. A constant level of NRA occurred in roots of NO3? induced plants. Removal of nutrient nitrate from these plants caused an exponential NRA decay with an approximate half-life of 12 h in intact plants and 5.5 h in excised roots. The latter value was also found in roots that were excised in the presence of nitrate, indicating that the sugar status primarily determines the apparent rate of nitrate reductase decay in excised roots.  相似文献   

19.
20.
Wanek  Wolfgang  Popp  Marianne 《Plant and Soil》2000,221(1):13-24
Increased levels of rhizospheric dissolved inorganic carbon have repeatedly been demonstrated to enhance plant growth by up to 80%, although carbon from dark fixation accounts for only 1–3% of total plant carbon gain. This study, therefore, aimed at investigating the effects of bicarbonate on nitrate uptake, assimilation and translocation to shoots. Clonal saplings of poplar (Populus canescens(Ait.) Sm.) and elder (Sambucus nigraL.) were grown hydroponically for 35 days in a nutrient solution containing 0, 0.5 and 1 mM bicarbonate and 2 mM nitrate as the sole nitrogen source at pH 7.0. Net nitrate uptake, root nitrate accumulation and reduction, and export of nitrogenous solutes to shoots were measured after incubating plants with 15N-labelled nitrate for 24 h. Net nitrate uptake increased non-significantly in plant species (19–61% compared to control plants) in response to 1 mM bicarbonate. Root nitrate reduction and nitrogen export to shoots increased by 80 and 95% and 15 and 44% in poplar and elder, respectively. With enhanced root zone bicarbonate, both species also exhibited a marked shift between the main nitrate utilising processes. Poplar plants increasingly utilised nitrate via nitrate reduction (73–88% of net nitrate uptake), whereas the proportions of export (20–9%) and storage in roots (7–3%) declined as plants were exposed to 1 mM external bicarbonate. On the other hand, elder plants exhibited a significant increase of root nitrate reduction (44–66%) and root nitrate accumulation (6–25%). Nitrate translocation to elder shoots decreased from 50 to 8% of net nitrate uptake. The improved supply of nitrogen to shoots did not translate into a significant stimulation of growth, relative growth rates increased by only 16% in poplar saplings and by 7% in elder plants. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号