首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied the effects of a defect in the p53 gene on spontaneous and radiation-induced somatic mutation frequencies in vivo by measuring T-cell receptor (TCR) and hypoxanthine phosphoribosyltransferase (HPRT) mutant frequencies (MFs) in p53 deficient mice both before and after exposure to X-irradiation. In the absence of irradiation, the TCR and HPRT mutant frequencies were roughly two-fold higher in p53 null (-/-) mice than in wild-type (+/+) mice. Unexpectedly, the TCR and HPRT MFs were slightly lower in heterozygote p53 (+/-) than in wild-type (+/+) mice, however. After 2 weeks 2Gy whole body irradiation the TCR and HPRT MFs were about two-fold higher in the p53 null (-/-) and p53 (+/-) mice than in the wild-type. Taken together, these findings suggest that a defect in the p53 gene may lead to TCR and HPRT mutants being recovered at higher frequencies in both irradiated and unirradiated mice, but it should be emphasized that the effects we have observed are not particularly strong, albeit that they are statistically significant. Interestingly, several of the highest TCR MF values that we observed in the course of our experiments were recorded in p53 (-/-) animals that had developed thymomas and hence appeared to be cancer prone.  相似文献   

2.
3.
Adolescence is a critical developmental stage during which substantial remodeling occurs in brain areas involved in emotional and learning processes. Although a robust literature on the biological effects of extremely low frequency magnetic fields (ELF‐MFs) has been documented, data on the effects of ELF‐MF exposure during this period on cognitive functions remain scarce. In this study, early adolescent male mice were exposed from postnatal day (P) 23–35 to a 50 Hz MF at 2 mT for 60 min/day. On P36–45, the potential effects of the MF exposure on spatial memory performance were examined using the Y‐maze and Morris water maze tasks. The results showed that the MF exposure did not affect Y‐maze performance but improved spatial learning acquisition and memory retention in the water maze task under the present experimental conditions. Bioelectromagnetics 34:275–284, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
Magnetic fields (MFs) from domestic power sources have been implicated as being a potential risk to human health. A number of epidemiological studies have found a significant link between exposure to MFs and increased rates of cancers. There have also been a number of in vivo and in vitro studies reporting effects of MFs in animal disease models and on the expression or activity of a range of proteins. In the past decade, our group proposed that atherosclerosis may have an autoimmune component, with heat shock protein 60 (Hsp60) expressed in endothelial cells as the dominant autoantigen. A number of stressors have been shown to induce the expression of Hsp60, including the classical risk factors for atherosclerosis. We were interested to see if the exposure of endothelial cells to an MF elicited increased expression of Hsp60, as has been reported previously for Hsp70. The present work describes the exposure of endothelial cells to domestic power supply (50 Hz) MFs at an intensity of 700 microT. The results from our system indicate that cultured endothelial cells exposed to a high intensity of MF either alone or in combination with classical heat stress show no effects on the expression of Hsp60 at either the messenger ribonucleic acid or the protein level. As such, there is no evidence that exposure to extremely low-frequency MF would be expected to increase the expression of Hsp60 and therefore the initiation or progression of atherosclerosis.  相似文献   

5.
In a previous article we developed an in vitro 23 kHz magnetic field (MF) exposure system that generated an MF of 532 µTrms. Using this system, the biological effects of 23 kHz MFs on cell functions have been reported. To further clarify the biological effect of intermediate‐frequency (IF) MFs and investigate the dose–response relationship in cell lines, an exposure system that generates stronger MFs is required. To meet this requirement, we developed a 6.25 mTrms MF exposure system for in vitro study. This level is 1000 times the reference level for the general public in the ICNIRP guidelines. This system provides an MF of 6.25 mTrms at 23 kHz with a uniformity within ±5%. To verify that in vitro experimental conditions are maintained, we examined the temperature, environmental MF, and MF leakage for a sham exposure system. In addition, we examined the harmonics, coil shape, and heat generated in the medium by the high‐strength MF. As a result, it was confirmed that this system can be used to evaluate the biological effects of IF MFs. This article presents the design and successful construction of the in vitro exposure system. Bioelectromagnetics 31:156–163, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Resting EEG is affected by exposure to a pulsed ELF magnetic field   总被引:8,自引:0,他引:8  
An increasing number of reports have demonstrated a significant effect of extremely low frequency magnetic fields (ELF MFs) on aspects of animal and human behavior. Recent studies suggest that exposure to ELF MFs affects human brain electrical activity as measured by electroencephalography (EEG), specifically within the alpha frequency (8-13 Hz). Here we report that exposure to a pulsed ELF MF with most power at frequencies between 0 and 500 Hz, known to affect aspects of analgesia and standing balance, also affects the human EEG. Twenty subjects (10 males; 10 females) received both a magnetic field (MF) and a sham session in a counterbalanced design for 15 min. Analysis of variance (ANOVA) revealed that alpha activity was significantly higher over the occipital electrodes (O1, Oz, O2) [F(1,16) = 6.858; P =.019, eta2 = 0.30] and marginally higher over the parietal electrodes (P3, Pz, P4) [F(1,16) = 4.251; P =.056, eta2 = 0.21] post MF exposure. This enhancement of alpha activity was transient, as it marginally decreased over occipital [F(1,16) = 4.417; P =.052; eta2 = 0.216] and parietal electrodes [F(1,16) = 4.244; P =.056; eta2 = 0.21] approximately 7 min after MF exposure compared to the sham exposure. Significantly higher occipital alpha activity is consistent with other experiments examining EEG responses to ELF MFs and ELF modulated radiofrequency fields associated with mobile phones. Hence, we suggest that this result may be a nonspecific physiological response to the pulsed MFs.  相似文献   

7.
The evidence of magnetic field (MF) effects on melatonin production in humans is limited and inconsistent. Part of the inconsistencies might be explained by findings suggesting interaction with light in pineal responses to MFs. To test this hypothesis, we reanalyzed data from a previously published study on 6-hydroxy melatonin sulfate (6-OHMS) excretion in women occupationally exposed to extremely low-frequency MFs. Based on questionnaire data on exposure to light-at-night (LAN), and measurement-based MF data, the 60 women were classified to four groups: no MF, no LAN; MF, no LAN; no MF, LAN; MF, LAN. The lowest excretion of 6-OHMS was observed in the group of women who were exposed to both MF and LAN, and the differences between the four groups were significant (P < .0001). The result is based on low numbers, but supports the hypothesis that daytime occupational exposure to MF enhances the effects of nighttime light exposure on melatonin production.  相似文献   

8.
The effects of low intensity, low frequency magnetic fields (MFs) on catalytic activity of the calcium dependent protease calpain was determined following the enzyme activation both in "in vitro" and "in vivo" conditions. We have observed that a 0.3 mT MF induces a significant increase in the requirement of the protease for this metal ion. This change is detectable at low [Ca(2+)] and disappears when the level of Ca(2+) is raised to saturating amounts. The observed effects are not due to transient MF(-) induced conformational changes occurring in calpain, but to direct effects of the MF on Ca(2+) ions, which become less available for the binding sites present in calpain. Altogether, these results indicate that exposure to low intensity, low frequency MFs alters the intracellular Ca(2+) "availability," thereby modifying the related cell response.  相似文献   

9.
In Hungary it is typical that 10/04 kV transformer stations are being installed in multistory residential and office buildings. Magnetic fields (MFs) up to several tens of microT have been measured in apartments close to transformers. The aim of the present study was to provide systematic assessment of MF exposure of residents living above transformer stations. Out of 41 addresses provided by the electricity supplier, current load of 21 transformers and MF in 21 apartments was measured. Spot MFs at 1 m height and time weighted average 24 h MF exposure at bed height was measured. All-day personal MF exposure was measured at waist and HOME exposure was calculated. BED exposure was measured at bed height. Participants kept a time-activity diary. The time-weighted average 24 h MF exposure (3.03 microT) exceeded the usual residential exposure (<0.2 microT). The mean HOME and BED personal exposure above transformers was 0.825 and 1.033 microT, respectively. Our study provides exposure assessment of a cohort with a wider exposure range, compared to power-line epidemiological studies.  相似文献   

10.
Wang T  Nie Y  Zhao S  Han Y  Du Y  Hou Y 《Bioelectromagnetics》2011,32(6):443-452
Effects of magnetic fields (MFs) on cancer cells may depend on cell type and exposure conditions. Gene expression levels are different among cancer cells. However, the effect of MFs on cancer cells with different gene expressions is still unclear. In this study, the cancer cell lines BGC-823, MKN-45, MKN-28, A549, SPC-A1, and LOVO were exposed to a low-frequency MF. Specific parameters of MFs were determined. Furthermore, the potential of the MF to influence cancer cell growth with midkine (MK) expression was evaluated. Cell proliferation and cell cycle were detected using the CCK-8 assay and flow cytometry. Cell ultrastructure was observed by transmission electron microscopy. BGC-823 cells with over-expression of MK (BGC-MK cells) and stanniocalcin-1 were generated by plasmid construction and transfection. Results showed that exposure to a 0.4-T, 7.5 Hz MF inhibited the proliferation of BGC-823, MKN-28, A549, and LOVO cells, but not MKN-45 and SPC-A1 cells. Moreover, the inhibitory effect of the MF on BGC-MK cells was lower (12.3%) than that of BGC-823 cells (20.3%). Analysis of the cell cycle showed that exposure to the MF led to a significant increase in the S phase in BGC-823 cells, but not in BGC-MK cells. In addition, organelle morphology was modified in BGC-823 cells exposed to the MF. These results suggest that exposure to a 0.4-T, 7.5 Hz MF could inhibit tumor cell proliferation and disturb the cell cycle. The alteration of MK expression in cancer cells may be related to the inhibitory effect of the MF on these cells.  相似文献   

11.
12.
Literature on cancer-related biological effects of extremely low frequency (ELF) magnetic fields (MF) is discussed in the light of the current understanding of carcinogenesis as a multistep process of accumulating mutations. Different animal models and study designs have been used to address possible cocarcinogenic effects of MFs. Based on a comparison of the results, we propose a hypothesis that MF exposure may potentiate the effects of known carcinogens only when both exposures are chronic. We also discuss possible mechanisms of MF effects on carcinogenesis and the adequacy of the classical two-step initiation/promotion animal experiments for simulating human exposure to the complex mixture of environmental carcinogens. We conclude that experiments designed according to the two-step concept may not be sufficient for studying the possible role of MF in carcinogenesis. Possible further animal studies are more likely to be productive if they include models that combine chronic exposure to MFs with long-term exposures to known carcinogens.  相似文献   

13.
The effect of magnetic field (MF) exposure on microcirculation and microvasculature is not clear or widely explored. In the limited body of data that exists, there are contradictions as to the effects of MFs on blood perfusion and pressure. Approximately half of the cited studies indicate a vasodilatory effect of MFs; the remaining half indicate that MFs could trigger either vasodilation or vasoconstriction depending on initial vessel tone. Few studies indicate that MFs cause a decrease in perfusion or no effect. There is a further lack of investigation into the cellular effects of MFs on microcirculation and microvasculature. The role of nitric oxide (NO) in mediating microcirculatory MF effects has been minimally explored and results are mixed, with four studies supporting an increase in NO activity, one supporting a biphasic effect, and five indicating no effect. MF effects on angiogenesis are also reported: seven studies supporting an increase and two a decrease. Possible reasons for these contradictions are explored. This review also considers the effects of magnetic resonance imaging (MRI) and anesthetics on microcirculation. Recommendations for future work include studies aimed at the cellular/mechanistic level, studies involving perfusion measurements both during and post-exposure, studies testing the effect of MFs on anesthetics, and investigation into the microcirculatory effects of MRI.  相似文献   

14.
The present study investigates the effects of a weak (+/-200 microT(pk)), pulsed, extremely low frequency magnetic field (ELF MF) upon the human electroencephalogram (EEG). We have previously determined that exposure to pulsed ELF MFs can affect the EEG, notably the alpha frequency (8-13 Hz) over the occipital-parietal region of the scalp. In the present study, subjects (n = 32) were exposed to two different pulsed MF sequences (1 and 2, used previously) that differed in presentation rate, in order to examine the effects upon the alpha frequency of the human EEG. Results suggest that compared to sham exposure, alpha activity was lowered over the occipital-parietal regions of the brain during exposure to Sequence 1, while alpha activity over the same regions was higher after Sequence 2 exposure. These effects occurred after approximately 5 min of pulsed MF exposure. The results also suggest that a previous exposure to the pulsed MF sequence determined subjects' responses in the present experiment. This study supports our previous observation of EEG changes after 5 min pulsed ELF MF exposure. The results of this study are also consistent with existing EEG experiments of ELF MF and mobile phone effects upon the brain.  相似文献   

15.
We studied the influence of magnetic fields (MFs) and simulated solar radiation (SSR) on ornithine decarboxylase (ODC) and polyamines in mouse epidermis. Chronic exposure to combined MF and SSR did not cause persistent effects on ODC activity or polyamines compared to the animals exposed only to UV, although the same MF treatment was previously found to accelerate skin tumor development. In an acute 24-h experiment, an elevation of putrescine and down-regulation of ODC activity was observed in the animals exposed to a 100-μT MF. No effect was seen 24 h after a single 2-MED (minimal erythemal dose) exposure to SSR. The results indicate that acute exposure to 50 Hz MF does exert distinctive biological effects on epidermal polyamine synthesis. Bioelectromagnetics 19:388–391, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
In our previous studies, we found that 50 Hz magnetic fields (MFs) could induce the phosphorylation of stress-activated protein kinase (SAPK) and enhance its enzymatic activity. In order to clarify the relationship between MF exposure and the SAPK pathway clearly, we studied the effects of 50 Hz MF exposure on phosphorylation (activation) of SEK1/MKK4 (the upstream kinase of SAPK). A Chinese hamster lung (CHL) cell line was exposed to 50 Hz MFs at two intensities (0.4 and 0.8 mT) for different durations, and Western blot analysis was used to measure the degree of phosphorylation (activation), and nonphosphorylation (non-activation) of SEK1/MKK4 with corresponding antibodies. The results showed that the exposures at both intensities could not induce the phosphorylation of SEK1/MKK4. However, treatment with high osmotic pressure NaCl could induce the phosphorylation of SEK1/MKK4 in cultured cells. It is suggested that 50 Hz MFs may activate the SAPK through a kinase other than SEK1/MKK4.  相似文献   

17.
We investigated the effects of extremely low frequency time-varying magnetic fields (MFs) on human normal and cancer cells. Whereas a single exposure to a 60-Hz time-varying MF of 6 mT for 30 min showed no effect, repetitive exposure decreased cell viability. This decrease was accompanied by phosphorylation of γ-H2AX, a common DNA double-strand break (DSB) marker, and checkpoint kinase 2 (Chk2), which is critical to the DNA damage checkpoint pathway. In addition, repetitive exposure to a time-varying MF of 6 mT for 30 min every 24 h for 3 days led to p38 activation and induction of apoptosis in cancer and normal cells. Therefore, these results demonstrate that repetitive exposure to MF with extremely low frequency can induce DNA DSBs and apoptosis through p38 activation. These results also suggest the need for further evaluation of the effects of repetitive exposure to environmental time-varying MFs on human health.  相似文献   

18.
It has been shown that the ultralow‐frequency extremely weak alternating component of combined magnetic fields (MFs) exhibits a marked antitumor activity. The parameters of this component have been found (frequency 1, 4.4, 16.5 Hz or the sum of these frequencies; intensity 300, 100, 150–300 nT, respectively) at which this MF in combination with a collinear static MF of 42 µT inhibits or suppresses the growth of Ehrlich ascites carcinoma (EAC) in mice. It was shown that the exposure of mice with EAC to combined MFs causes structural changes in some organs (liver, adrenal glands), which are probably due to the total degradation of the tumor tissue. In mice with transplanted EAC, the tumor tissue after exposure to weak MFs was practically absent, as distinct from control animals in which the invasion of the tumor into the adipose tissue surrounding the kidneys, mesenteric lymph nodes, and spermatic appendages was observed. In animals without tumors, no pathological deviations from the norm in the structure of organs and tissues occurred after exposure to weak MF, indicating that this factor per se is not toxic to the organism. Bioelectromagnetics 30:343–351, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
BACKGROUND: Epidemiologic data revealed increased brain tumor incidence in workers exposed to magnetic fields (MFs), raising concerns about the possible link between MF exposure and cancer. However, MFs seem to be neither mutagenic nor tumorigenic. The mechanism of their tumorigenic effect has not been elucidated. METHODS: To evaluate the interference of MFs with physical (heat shock, HS) and chemical (etoposide, VP16) induced apoptoses, respectively, we exposed a human glioblastoma primary culture to 6 mT static MF. We investigated cytosolic Ca(2+) ([Ca(2+)](i)) fluxes and extent of apoptosis as key endpoints. The effect of MFs on HS- and VP16-induced apoptoses in primary glioblastoma cultures from four patients was also tested. RESULTS: Static MFs increased the [Ca(2+)](i) from a basal value of 124 +/- 4 nM to 233 +/- 43 nM (P < 0.05). MF exposure dramatically reduced the extent of HS- and VP16-induced apoptoses in all four glioblastoma primary cultures analyzed by 56% (range, 28-87%) and 44% (range, 38-48%), respectively. However, MF alone did not exert any apoptogenic activity. Differences were observed across the four cultures with regard to apoptotic induction by HS and VP16 and to MF apoptotic reduction, with an individual variability with regard to apoptotic sensitivity. CONCLUSION: The ability of static MFs to reduce the extent of damage-induced apoptosis in glioblastoma cells might allow the survival of damaged and possibly mutated cells.  相似文献   

20.
A series of epidemiological studies have indicated associations between exposure to magnetic fields (MFs) and a variety of cancers, including breast cancer. In order to test the possibility that MF acts as a cancer promoter or copromoter, four separate experiments have been conducted in rats in which the effects of chronic exposure to MFs on the development of mammary tumors induced by 7,12-dimethylbenz(a)anthracene (DMBA) were determined. Female rats were exposed in magnetic coils for 91 days (24 h/day) to either alternating current (AC; 50 Hz)-MF or direct current (DC)-MF. Magnetic flux density of the DC-MF was 15 mT. Two AC-MF exposures used a homogeneous field with a flux density of 30 mT (rms); one used a gradient field with flux density ranging from 0.3–1 μT. DMBA (5 mg) was administered orally at the onset of MF exposure and was repeated thrice at intervals of 1 week. In each experiment, 18–36 animals were exposed in 6 magnetic coils. The same number of rats were used as sham-exposed control. These control animals were treated with DMBA and were placed in dummy coils in the same room as the MF-exposed rats. Furthermore, groups of age-matched rats (reference controls) were treated with DMBA but housed in another room to exclude any MF exposure due to the magnetic stray field from the MF produced by coils. At the end of the exposure or sham-exposure period, tumor number and weight or size of tumors were determined at necropsy. Results were as follows: In sham-exposed animals or reference controls, the tumor incidence varied between 50 and 78% in the 4 experiments. The average number of mammary tumors per tumor-bearing animal varied between 1.6 and 2.9. In none of the experiments did MFs significantly alter tumor incidence, but in one of the experiments with AC-MF exposure at 30 mT, the number of tumors per tumor-bearing animal was significantly increased. Furthermore, exposure to a DC-MF at 15 mT significantly enhanced the tumor weight. Exposure to a gradient AC-MF at 0.3–1 μT exerted no significant effects. These experiments seem to indicate that MFs at high flux densities may act as a promoter or copromoter of breast cancer. However, this interpretation must be considered only a tentative conclusion because of the limitations of this study, particularly the small sample size used for MF exposure and the lack of repetition of data. © 1993 Wiley-Liss. Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号