首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A procedure for the purification of neutral maltase from human polymorphonuclear leukocytes is described, involving solubilization with Triton X-100, proteolytic attack and three chromatographic steps: DEAE ion exchange, AcA 22 gel filtration and a second DEAE chromatography. The enzyme was obtained with a final specific activity of 30 units/mg of protein, comparable with that of other neutral maltases previously purified. The Mr of the enzyme was 550,000 as determined by gel filtration. SDS/polyacrylamide-gel electrophoresis, under non-denaturing conditions, led to a major band of 500,000 and a minor one of 260,000, both active, suggesting a polymeric or aggregated form of the protein. The catalytic properties of the human granulocytic neutral maltase were investigated. The pH optimum was around 6. The enzyme exhibited a broad range of substrate specificity, hydrolysing di- and oligosaccharides with alpha (1----2), alpha (1----3) and alpha (1----4) glucosidic linkages. The highest activities were observed for alpha (1----4) glucose oligomers of three to five residues. It was also found to hydrolyse polysaccharides such as starch and glycogen. The results of the inhibition studies are interpreted in terms of the existence of a large site including several subsites. The enzyme properties are broadly similar to those observed for other purified neutral alpha-glucosidases, in particular that of human kidney origin.  相似文献   

2.
A neutral maltase immunologically similar to this of kidney exist in human granulocytes. We have studied some kinetic properties of this enzyme on a microsomal fraction of granulocytes. Its optimal pH is very closed of 6.8 and this enzyme, highly specific for maltose, hydrolysis very weakly the nigeriosis. Maltotriose, maltotetraose and maltopentanose are inhibitors of this enzyme, which is not inhibited by all disaccharides studied.  相似文献   

3.
Neutral maltase from human granulocytes has a different substrate specificity from the human neutral maltase of kidney, though it has been reported that these two enzymes are immunologically similar. We report here that human granulocyte neutral maltase is similar to the neutral maltase from rat's kidney as regards the substrate specificity and the inhibition by Tris and maltodextrins. We also report a different thermal stability that might imply some structural differences between the two enzymes.  相似文献   

4.
Hydrodynamic, crosslinking and immunoprecipitation studies were performed on detergent solubilized cytochrome b to demonstrate that the two copurifying polypeptides of molecular weight 91,000 (glycosylated) and 22,000 [1,2] formed a molecular complex. The hydrodynamic studies indicated that the cytochrome b/detergent complex had a sedimentation coefficient, partial specific volume and Stokes radius of 5.25 S, 0.82 cm3/g and 6.2 nm in Triton X-100 and 6.05 S, 0.80 cm3/g and 5.6 nm in octylglucoside, respectively. These studies also indicated that the detergent-protein complex has a molecular mass of 202 and 188 kDa in Triton X-100 and octylglucoside, respectively, is asymmetric in shape with a frictional coefficient of 1.3-1.4 and binds significant amounts of detergent. The molecular mass of the protein portion of the detergent-cytochrome complex was estimated to be between 100 and 127 kDa. Crosslinking studies with disuccinimidyl suberate and alkaline cleavable bis[2-(succinimidooxy-carbonyloxy)ethyl]sulfone revealed that the Mr = 91,000 and Mr = 22,000 components of purified cytochrome b are closely associated and can be covalently bound to form a polypeptide which, by SDS-polyacrylamide gel electrophoresis, has Mr values of 110,000-120,000 and 120,000-135,000 on 8% and 11% (w/v) SDS-polyacrylamide gels, respectively. Cleavage of the crosslinked species resulted in the reappearance of the Mr = 91,000 and Mr = 22,000 species. Sedimentation profiles of crosslinked cytochrome b in linear sucrose density gradients made up in H2O were identical to those of non-crosslinked controls. A close association of the two protein species was further confirmed by the ability of antibody specific for the smaller subunit to immunoprecipitate the larger one also. Experiments aimed at identifying the heme-carrying subunit(s) were inconclusive, since dissociation of the complex resulted in loss of cytochrome b spectrum. These results, in combination with our SDS-polyacrylamide gel electrophoresis molecular-weight estimates, provide strong evidence for the cytochrome b being an alpha-beta-type heterodimer composed of a glycosylated Mr = 91,000 and non-glycosylated Mr = 22,000 polypeptide.  相似文献   

5.
Bacillus subtilis P-11, capable of producing extracellular maltase, was isolated from soil. Maximum enzyme production was obtained on a medium containing 2.0% methyl-alpha-D-glucose, 0.5% phytone, and 0.2% yeast extract. After the removal of cells, extracellular maltase was precipitated by ammonium sulfate (85% saturation). The enzyme was purified by using the following procedures: Sephadex G-200 column chromatography, diethylaminoethyl-Sephadex A-50 ion-exchange column chromatography, and a second Sephadex G-200 column chromatography. A highly purified maltase without amylase or proteinase activities was obtained. Some properties of the extracellular maltase were determined: optimum pH, 6.0; optimum temperature, 45 C, when the incubation time was 30 min; pH stability, within 5.5 to 6.5; heat stability, stable up to 45 C; isoelectric point, pH 6.0 (by gel-isoelectric focusing); molecular weight, 33,000 (by gel filtration with Sephadex G-200); substrate specificity: the relative rates of hydrolysis of maltose, maltotriose, isomaltose, and maltotetraose were 100:15:14:4, respectively, and there was no activity toward alkyl or aryl-alpha-D-glucosides, amylose, or other higher polymers. Transglucosylase activity was present. Glucose and tris(hydroxymethyl)aminomethane were competitive inhibitors with Ki values of 4.54 and 75.08 mM, respectively; cysteine was a noncompetitive inhibitor. Michaelis constants were 5 mM for maltose, 1 mM for maltoriose, and 10 mM for isomaltose. A plot of pKm (-log Km) versus pH revealed two deflection points, one each at 5.5 and 6.5; these probably corresponded to an imidazole group of a histidine residue in or near the active center; this assumption was supported by the strong inhibition of enzyme activity by rose bengal.  相似文献   

6.
Bacillus subtilis P-11, capable of producing extracellular maltase, was isolated from soil. Maximum enzyme production was obtained on a medium containing 2.0% methyl-alpha-D-glucose, 0.5% phytone, and 0.2% yeast extract. After the removal of cells, extracellular maltase was precipitated by ammonium sulfate (85% saturation). The enzyme was purified by using the following procedures: Sephadex G-200 column chromatography, diethylaminoethyl-Sephadex A-50 ion-exchange column chromatography, and a second Sephadex G-200 column chromatography. A highly purified maltase without amylase or proteinase activities was obtained. Some properties of the extracellular maltase were determined: optimum pH, 6.0; optimum temperature, 45 C, when the incubation time was 30 min; pH stability, within 5.5 to 6.5; heat stability, stable up to 45 C; isoelectric point, pH 6.0 (by gel-isoelectric focusing); molecular weight, 33,000 (by gel filtration with Sephadex G-200); substrate specificity: the relative rates of hydrolysis of maltose, maltotriose, isomaltose, and maltotetraose were 100:15:14:4, respectively, and there was no activity toward alkyl or aryl-alpha-D-glucosides, amylose, or other higher polymers. Transglucosylase activity was present. Glucose and tris(hydroxymethyl)aminomethane were competitive inhibitors with Ki values of 4.54 and 75.08 mM, respectively; cysteine was a noncompetitive inhibitor. Michaelis constants were 5 mM for maltose, 1 mM for maltoriose, and 10 mM for isomaltose. A plot of pKm (-log Km) versus pH revealed two deflection points, one each at 5.5 and 6.5; these probably corresponded to an imidazole group of a histidine residue in or near the active center; this assumption was supported by the strong inhibition of enzyme activity by rose bengal.  相似文献   

7.
The isolation of Saccharomyces cerevisiae plasma membrane was carried out after hypotonic lysis of yeast protoplasts treated with concanavalin A by two independent methods: a, at low speed centrifugation and b, at high speed centrifugation in a density gradient. Several techniques (electron microscopic, enzymic, tagging, etc.) were used to ascertain the degree of purification of the plasma membranes obtained. The low speed centrifugation technique as compared with the other method gave a higher yield of plasma membranes with a similar degree of purification. Analysis of the yeast plasma membrane of normally growing cells by sodium dodecyl sulphate polyacrylamide gel electrophoresis showed at least 25 polypeptide bands. Twelve glycoprotein bands were also found, and their apparent molecular weights were determined. Treatment of the protoplasts with cycloheximide resulted in a significant decrease in the carbohydrate and protein content of the plasma membrane. The electrophoretic pattern of the plasma membrane of cycloheximide-treated cells showed a redistribution of the relative amounts of each protein band and a drastic reduction in the number of Schiff-positive bands. The isoelectric point of the most abundant proteins was low (pI 4) or lower than expected from previous data. A large part of the mannosyl transferase activity found in the cell (80%) was associated with the internal membranes, the remaining activity (20%) was located in the plasma membrane preparation. Part of the mannosyl transferase activity of the cells is located at the plasma membrane surface. Invertase (an external mannoprotein) is found in both the plasma and internal membranes, and as the specific activity dropped significantly following cycloheximide treatment of the cells, it is suggested that these membranes systems are the structures for the glycosylation of a precursor invertase and its subsequent release into the periplasmic space. Other transferase found in the plasma membrane preparation transfers glucose residues from UDPglucose to a poly(alpha(1 leads to 4) polymer identified as glycogen.  相似文献   

8.
P170 (P-glycoprotein) is a membrane protein found in high levels in multidrug-resistant cultured cell lines. We have localized this protein using monoclonal antibody MRK16 by immunofluorescence and electron microscopy in the multidrug-resistant human carcinoma cell line KB-C4. The P170 determinant recognized by antibody MRK16 was found on drug-resistant KB-C4 cells, but not on parental drug-sensitive KB-3-1 cells. The determinant was present on the external surface of the plasma membrane and on the luminal side of Golgi stack membranes. P170 was excluded from coated pits at the plasma membrane and absent from endocytic vesicles and lysosomes. This determinant was detected only in small amounts in the endoplasmic reticulum. The high protein concentration of P170 in the plasma membrane is consistent with a role of this protein as a drug efflux pump at the cell surface.  相似文献   

9.
A fractionation procedure is described which allows the isolation of three major human erythrocyte membrane proteins. Their isolation involves three sequential extraction procedures followed by gel filtration in 1% sodium dodecyl sulphate and preparative gel electrophoresis. All three proteins can be isolated from a single preparation. One of the proteins is the erythrocyte sialoglycoprotein, for which no C- or N-terminal residues were found. The other two proteins, which have not previously been isolated, have subunit molecular weights of 74000 and 93000 and contain 9 and 7% carbohydrate respectively. These glycoproteins have blocked N-terminal residues and show similarities in their chemical properties. Preparations derived from blood-group O erythrocytes contain no N-acetylgalactosamine, but similar preparations from blood-group A erythrocytes do contain this sugar. These three proteins cannot easily be solubilized by gentle aqueous procedures and represent about half of the erythrocyte ;ghost' protein. They carry a large proportion of the cell-surface carbohydrate.  相似文献   

10.
11.
12.
Most in vitro studies use 2-dimensional (2D) monolayer cultures, where cells are forced to adjust to unnatural substrates that differ significantly from the natural 3-dimensional (3D) extracellular matrix that surrounds cells in living organisms. Our analysis demonstrates significant differences in the cholesterol and sphingomyelin content, structural organization and cholesterol susceptibility to oxidation of plasma membranes isolated from cells cultured in 3D cultures compared with conventional 2D cultures. Differences occurred in the asymmetry of cholesterol molecules and the physico-chemical properties of the 2 separate leaflets of plasma membranes in 2D and 3D cultured fibroblasts. Transmembrane distribution of other membrane phospholipids was not different, implying that the cholesterol asymmetry could not be attributed to alterations in the scramblase transport system. Differences were also established in the chemical activity of cholesterol, assessed by its susceptibility to cholesterol oxidase in conventional and “matrix” cell cultures. The influence of plasma membrane sphingomyelin and phospholipid content on cholesterol susceptibility to oxidation in 2D and 3D cells was investigated with exogenous sphingomyelinase (SMase) and phospholipase C (PLC) treatment. Sphingomyelin was more effective than membrane phospholipids in protecting cholesterol from oxidation. We presume that the higher cholesterol/sphingomyelin molar ratio is the reason for the higher rate of cholesterol oxidation in plasma membranes of 3D cells.  相似文献   

13.
14.
Lipoxygenase activity was measured in human platelet subcellular fractions. From a sonicated platelet preparation, a granule fraction, mixed membranes (surface and intracellular) and cytosol fractions were separated by differential centrifugation. With respect to activities in the sonicated preparation, the lipoxygenase was slightly enriched in both the cytosol and mixed-membrane fractions and consistently de-enriched in the granule fractions. Approx. 65% and 20% of the total cell enzyme activity were found in the cytosol and mixed membranes respectively, with only 8% present in the granule fraction. Additionally we measured the lipoxygenase activity in purified surface- and intracellular-membrane subfractions prepared from the mixed membranes by free-flow electrophoresis. There was a slight enrichment in activity in the intracellular membrane fraction compared with that in the mixed membranes, and a depletion of activity in the surface membranes. Characterization of the enzyme activity, i.e. time course, pH-dependence, Ca2+-dependence, Vmax. and Km for arachidonic acid, and the carbon-position specificity for this acid, failed to reveal any significant differences between the membrane-bound and soluble forms of the lipoxygenase. These findings suggest that in human platelets the same lipoxygenase is associated with the membranes as in the cytosol and that the membrane-bound activity predominates in intracellular membrane elements.  相似文献   

15.
The fhu operon of Escherichia coli K-12 comprises four genes, termed fhuA,C,D,B, which are involved in the uptake of iron-hydroxamate compounds. The fhuA gene encodes the outer membrane receptor protein. Cells that contained three copies of the fhuACD fragment on the thermoamplifiable plasmid pHK232 accumulated at 37° C large amounts of the proFhuA protein. Most of the overproduced proFhuA protein was not translocated into the outer membrane but instead precipitated at the cytoplasmic side of the inner membrane, presumably at the sites of synthesis. Despite inhibition of export proFhuA synthesis continued.The precipitate formed was sedimented by centrifugation at 8,000xg. The proFhuA protein could be solubilized in 1% sodium dodecyl sulfate. Replacement of sodium dodecyl sulfate by Triton X-100 resulted in a proFhuA protein which exhibited 10% of the phage T5 binding activity of renatured mature FhuA protein. Binding of phage T5 was inhibited by the FhuA-specific ligands ferrichrome, albomycin and colicin M. Limited proteolysis of the isolated pro- and mature form of the FhuA protein with trypsin yielded similar oligopeptide patterns. Addition of ferrichrome affected trypsin cleavage of both proteins in the same way. The common proteolytic intermediates together with phage inactivation indicate a similar conformation of the pro- and mature form.Dedicated to Prof. G. Braunitzer on the occasion of his 60th birthday  相似文献   

16.
17.
We have compared effects of dimethylsulfoxide (Me2SO) and two polyols on the Ca2+-ATPase purified from human erythrocytes. As studied under steady-state conditions over a broad solute concentration range and temperature, Me2SO, glycerol, and xylitol do not inhibit the Ca2+-ATPase activity; this is in contrast to numerous other organic solutes that we have investigated. Under specific experimental conditions, Me2SO (but not glycerol) substantially increases Ca2+-ATPase activity, suggesting a possible facilitation of enzyme oligomerization. The activation is more pronounced at low Ca2+ concentrations. In contrast to glycerol, Me2SO shows no protective effect on enzyme structure as assessed by determining residual Ca2+-ATPase activity after exposing the enzyme to thermal denaturation at 45°C. Under these conditions several other organic solutes strongly enhance the denaturating effect of temperature. Because of the temperature dependence of its effect on the Ca2+-ATPase activity we believe that Me2SO activates the Ca2+-ATPase by indirect water-mediated interactions.  相似文献   

18.
The catecholamine-stimulated cotransport of sodium and potassium ions across the plasma membrane of the turkey erythrocyte was previously found to be associated with increased 32P incorporation into a high molecular weight protein. To determine the subcellular localization of this phosphorylated protein, which we have termed goblin, a new method has been developed for isolation of pure plasma membranes from turkey erythrocytes. With this method, it has been demonstrated that goblin is located in the plasma membrane. Goblin is not extracted by solutions of low or high ionic strength but is partially extracted by nonionic detergents, indicating that it is not a component of turkey erythrocyte spectrin and suggesting that it may be an intrinsic protein of the plasma membrane. The data are compatible with a possible role for goblin in the hormonal control of ion movements across the plasma membrane.  相似文献   

19.
Thiol-affinity labelling was used to identify and characterize components of the peptide transport system in the barley (Hordeum vulgare) scutellar epithelium. SDS-PAGE and 2D-PAGE in conjunction with fluorography were used to study derivatized proteins. Membrane proteins of 42 kDa and 66 kDa were identified using a strategy devised to label substrate protectable protein with the thiol specific reagent [14C] N-ethylmaleimide (NEM). The scutellar plasma membrane is the anticipated site of transporters involved in the mobilization of endosperm storage reserves in the germinating barley grain. The subcellular localization of these proteins to the plasma membrane was demonstrated by thiol-affinity labelling of high purity plasma membrane vesicles isolated from barley scutellar tissue. A peptide transporter, HvPTR1, specific to the barley scutellum has recently been cloned in this laboratory. A 66 kDa protein, comparable to the predicted molecular mass of HvPTR1, was identified by [14C]NEM labelling studies of Xenopus laevis oocytes expressing HvPTR1 cRNA, but not water injected controls. Peptide antiserum raised to HvPTR1 also cross-reacted with a 66 kDa membrane protein in barley scutellar tissue. This confirms that the 66 kDa protein identified here by thiol-affinity labelling studies is the barley scutellum peptide transporter HvPTR1, and demonstrates that this protein is localized to the plasma membrane of scutellar epithelial cells during germination.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号