首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present article, we describe the cloning and characterization of the Trichoderma harzianum hmgR gene encoding a hydroxymethylglutaryl CoA reductase (HMGR), a key enzyme in the biosynthesis of terpene compounds. In T. harzianum, partial silencing of the hmgR gene gave rise to transformants with a higher level of sensitivity to lovastatin, a competitive inhibitor of the HMGR enzyme. In addition, these hmgR-silenced transformants produced lower levels of ergosterol than the wild-type strain in a minimal medium containing lovastatin. The silenced transformants showed a decrease in hmgR gene expression (up to a 8.4-fold, after 72h of incubation), together with an increase in the expression of erg7 (up to a 15.8-fold, after 72h of incubation), a gene involved in the biosynthesis of triterpenes. Finally, hmgR-silenced transformants showed a reduction in their antifungal activity against the plant-pathogen fungi Rhizoctonia solani and Fusarium oxysporum.  相似文献   

2.
Squalene epoxidase, encoded by the ERG1 gene in yeast, is a key enzyme of sterol biosynthesis. Analysis of subcellular fractions revealed that squalene epoxidase was present in the microsomal fraction (30,000 × g) and also cofractionated with lipid particles. A dual localization of Erg1p was confirmed by immunofluorescence microscopy. On the basis of the distribution of marker proteins, 62% of cellular Erg1p could be assigned to the endoplasmic reticulum and 38% to lipid particles in late logarithmic-phase cells. In contrast, sterol Δ24-methyltransferase (Erg6p), an enzyme catalyzing a late step in sterol biosynthesis, was found mainly in lipid particles cofractionating with triacylglycerols and steryl esters. The relative distribution of Erg1p between the endoplasmic reticulum and lipid particles changes during growth. Squalene epoxidase (Erg1p) was absent in an erg1 disruptant strain and was induced fivefold in lipid particles and in the endoplasmic reticulum when the ERG1 gene was overexpressed from a multicopy plasmid. The amount of squalene epoxidase in both compartments was also induced approximately fivefold by treatment of yeast cells with terbinafine, an inhibitor of the fungal squalene epoxidase. In contrast to the distribution of the protein, enzymatic activity of squalene epoxidase was only detectable in the endoplasmic reticulum but was absent from isolated lipid particles. When lipid particles of the wild-type strain and microsomes of an erg1 disruptant were mixed, squalene epoxidase activity was partially restored. These findings suggest that factor(s) present in the endoplasmic reticulum are required for squalene epoxidase activity. Close contact between lipid particles and endoplasmic reticulum may be necessary for a concerted action of these two compartments in sterol biosynthesis.  相似文献   

3.
4.
5.
Summary Thermosensitive mutants, auxotrophic for ergosterol synthesis, have been isolated, analyzed genetically and their enzymatic deficiencies investigated. These mutants were classified into seven unlinked complementation groups. These groupes lack the following enzymatic activities: squalene epoxidase (erg 1), 2,3-oxidosqualene-lanosterol cyclase (erg 7), phosphomevalonic kinase (erg 8), mevalonic kinase (erg 12) and squalene synthetase (erg 9, erg 10, erg 11).  相似文献   

6.
Chagas disease represents a serious public health problem in South America. The first line of treatment is Nifurtimox and Benznidazole which generate toxic effects in treated patients. We have recently shown that a number of 5-nitrofuranes possess activity against Trypanosoma cruzi through oxidative stress and inhibition of parasite ergosterol biosynthesis, specifically at the level of squalene epoxidase. Here, we identify new 5-nitrofuranes and the thia-analogues with excellent effects on the viability of T. cruzi and adequate parasite/mammal selectivity indexes. Analysis of the free sterols from parasite incubated, during 120 h, with the compounds showed that some of them accumulated squalene suggesting the squalene epoxidase activity inhibition of the parasite. Nifurtimox was able to accumulate squalene only at lower incubation times. Due to this fact some derivatives were also tested as antifungal agents. Quantitative structure–activity relationship studies were also performed showing relevant features for further new derivatives design. Taken together, the results obtained in the present work point to a more general effect of 5-nitrofuranes and 5-nitrothiophenes in trypanosomatids, opening potential therapeutic possibilities of them for these infectious diseases.  相似文献   

7.
In yeast, deletion of ERG27, which encodes the sterol biosynthetic enzyme, 3-keto-reductase, results in a concomitant loss of the upstream enzyme, Erg7p, an oxidosqualene cyclase (OSC). However, this phenomenon occurs only in fungi, as mammalian Erg27p orthologues are unable to rescue yeast Erg7p activity. In this study, an erg27 mutant containing the mouse ERG27 orthologue was isolated that was capable of growing without sterol supplementation (FGerg27). GC/MS analysis of this strain showed an accumulation of squalene epoxides, 3-ketosterones, and ergosterol. This strain which was crossed to a wildtype and daughter segregants showed an accumulation of squalene epoxides as well as ergosterol indicating that the mutation entailed a leaky block at ERG7. Upon sequencing the yeast ERG7 gene an A598S alteration was found in a conserved alpha helical region. We theorize that this mutation stabilizes Erg7p in a conformation that mimics Erg27p binding. This mutation, while decreasing OSC activity still retains sufficient residual OSC activity such that the strain in the presence of the mammalian 3-keto reductase enzyme functions and no longer requires the yeast Erg27p. Because sterol biosynthesis occurs in the ER, a fusion protein was synthesized combining Erg7p and Erg28p, a resident ER protein and scaffold of the C-4 demethyation complex. Both FGerg27 and erg27 strains containing this fusion plasmid and the mouse ERG27 orthologue showed restoration of ergosterol biosynthesis with minimal accumulation of squalene epoxides. These results indicate retention of Erg7p in the ER increases its activity and suggest a novel method of regulation of ergosterol biosynthesis.  相似文献   

8.
The effect of oxygen on squalene epoxidase activity in Saccharomyces cerevisiae was investigated. In cells grown in standing cultures, the epoxidase was localized mainly in the "mitochondrial" fraction. Upon aeration, enzyme activity increased and the newly formed enzyme was associated with the "microsomal" fraction. At 0.03% (vol/vol) oxygen, epoxidase levels doubled, whereas the ergosterol level was only slightly increased. Cycloheximide inhibited the increase in epoxidase under these conditions. An apparent Km for oxygen of 0.38% (vol/vol) was determined from a crude particulate preparation for the epoxidase.  相似文献   

9.
We describe a simple assay for measuring squalene epoxidase specific activity in Saccharomyces cerevisiae cell-free extracts, by using [14C] farnesyl pyrophosphate as substrate. Cofactor requirements for activity are FAD and NADPH or NADH, NADPH being the preferred reduced pyridine nucleotide. Squalene epoxidase activity is localized in microsomal fraction and no supernatant soluble factor is required for maximum activity. Microsomal fraction converted farnesyl pyrophosphate into squalene, squalene 2,3-epoxide and lanosterol, showing that squalene 2,3-epoxide-lanosterol cyclase is also a microsome-bound enzyme. We show also that squalene epoxidase activity is not inhibited by ergosterol or lanosterol, but that enzyme synthesis is induced by oxygen.  相似文献   

10.
11.
Currently, statins are the only drugs acting on the mammalian isoprenoid pathway. The mammalian genes in this pathway are not easily amenable to genetic manipulation. Thus, it is difficult to study the effects of the inhibition of various enzymes on the intermediate and final products in the isoprenoid pathway. In fission yeast, antifungal compounds such as azoles and terbinafine are available as inhibitors of the pathway in addition to statins, and various isoprenoid pathway mutants are also available. Here in these mutants, treated with statins or antifungals, we quantified the final and intermediate products of the fission yeast isoprenoid pathway using liquid chromatography-mass spectrometry/mass spectrometry. In hmg1-1, a mutant of the gene encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), ergosterol (a final sterol product), and squalene (an intermediate pathway product), were decreased to approximately 80% and 10%, respectively, compared with that of wild-type cells. Consistently in wild-type cells, pravastatin, an HMGR inhibitor decreased ergosterol and squalene, and the effect was more pronounced on squalene. In hmg1-1 mutant and in wild-type cells treated with pravastatin, the decrease in the levels of farnesyl pyrophosphate and geranylgeranyl pyrophosphate respectively was larger than that of ergosterol but was smaller than that of squalene. In Δerg6 or Δsts1 cells, mutants of the genes involved in the last step of the pathway, ergosterol was not detected, and the changes of intermediate product levels were distinct from that of hmg1-1 mutant. Notably, in wild-type cells miconazole and terbinafine only slightly decreased ergosterol level. Altogether, these studies suggest that the pleiotropic phenotypes caused by the hmg1-1 mutation and pravastatin might be due to decreased levels of isoprenoid pyrophosphates or other isoprenoid pathway intermediate products rather than due to a decreased ergosterol level.  相似文献   

12.
In recent years their has been an increased use of antifungal agents and has resulted in the development of resistance to drugs. Currently, use of standard antifungal therapies can be limited because of toxicity, low efficacy rates. Different types of mechanisms contribute to the development of resistance to antifungals. This has given raise to search for a new heterocycle with distinct action or multitargeted combination therapy. This review addresses the areas such as the underlying mechanisms, eight different targets such as ergosterol synthesis, chitin synthesis, ergosterol disruptors, glucan synthesis, squalene epoxidase, nucleic acid synthesis, protein synthesis, microtubules synthesis. The clinically employed drugs along with the current research work going on worldwide on different heterocycles are discussed. In recent advances various heterocycles including imidazole, benzimidazole etc., twenty three scaffolds and their lead identification are discussed.  相似文献   

13.
14.
Genes of the post-squalene ergosterol biosynthetic pathway in Saccharomyces cerevisiae have been overexpressed in a systematic approach with the aim to construct yeast strains that produce high amounts of sterols from a squalene-accumulating strain. This strain had previously been deregulated by overexpressing a truncated HMG-CoA reductase (tHMG1) in the main bottleneck of the early ergosterol pathway. The overexpression of the gene ERG1 (squalene epoxidase) induced a significant decrease of the direct substrate squalene, a high increase of lanosterol, and a small increase of later sterols. The overexpression of the ERG11 gene encoding the sterol-14alpha-demethylase resulted in a decrease of lanosterol and an increase of downstream sterols. When these two genes were simultaneously overexpressed, later sterols from zymosterol to ergosterol accumulated and the content of squalene was decreased about three-fold, indicating that these steps had limited the transformation of squalene into sterols. The total sterol content in this strain was three-fold higher than in a wild-type strain.  相似文献   

15.
Squalene epoxidase catalyzes the formation of 2,3-oxidosqualene from squalene and in plants is the last enzyme common to all biosynthetic pathways leading to an array of triterpene derivatives like phytosterols, brassinosteroid phytohormones or saponins. In this work, we present a squalene epoxidase gene (NSSQE1) from the triterpene saponin producing plant Nigella sativa. The gene product showed a high degree of homology to functional squalene epoxidases (SQEs) from Arabidopsis thaliana and was able to complement SQE deficient yeast that harboured a knockout mutation in the underlying erg1 gene. Moreover, the expression of the NSSQE1 gene in ERG1 wild type yeast revealed that NSSQE1 conferred resistance towards terbinafine, an inhibitor of fungal SQEs. The latter suggested that a terbinafine-dependent NSSQE1 selection marker system can be developed for yeast. The gene NSSQE1 was ubiquitously expressed in all plant tissues analysed, including roots where no triterpene saponins are produced. Therefore, we argue that NSSQE1 is a housekeeping gene for triterpene metabolism in Nigella sativa. Similar to triterpene saponins, NSSQE1 was up-regulated by methyl jasmonate in leaves and should also be functionally involved in saponin biosynthesis in Nigella sativa.  相似文献   

16.
Trichothecenes are fungal sesquiterpenoid compounds, the majority of which have phytotoxic activity. They contaminate food and feed stocks, resulting in potential harm to animals and human beings. Trichoderma brevicompactum and T. arundinaceum produce trichodermin and harzianum A (HA), respectively, two trichothecenes that show different bioactive properties. Both compounds have remarkable antibiotic and cytotoxic activities, but in addition, trichodermin is highly phytotoxic, while HA lacks this activity when analyzed in vivo. Analysis of Fusarium trichothecene intermediates led to the conclusion that most of them, with the exception of the hydrocarbon precursor trichodiene (TD), have a detectable phytotoxic activity which is not directly related to the structural complexity of the intermediate. In the present work, the HA intermediate 12,13-epoxytrichothec-9-ene (EPT) was produced by expression of the T. arundinaceum tri4 gene in a transgenic T. harzianum strain that already produces TD after transformation with the T. arundinaceum tri5 gene. Purified EPT did not show antifungal or phytotoxic activity, while purified HA showed both antifungal and phytotoxic activities. However, the use of the transgenic T. harzianum tri4 strain induced a downregulation of defense-related genes in tomato plants and also downregulated plant genes involved in fungal root colonization. The production of EPT by the transgenic tri4 strain raised levels of erg1 expression and reduced squalene accumulation while not affecting levels of ergosterol. Together, these results indicate the complex interactions among trichothecene intermediates, fungal antagonists, and host plants.  相似文献   

17.
Finding new compounds with antifungal properties is an important task due to the side effects of common antifungal drugs and emerging antifungal resistance in fungal strains. ?24-sterol methyltransferase (24-SMT) is a crucial enzyme that plays important roles in fungal ergosterol biosynthesis pathway and is not found in humans. In the present study, the effects of α-bisabolol on Aspergillus fumigatus Af239 growth and ergosterol synthesis on the base of 24-SMT enzyme activity were studied; in addition, the expression of erg6, the gene encoded 24-SMT, was considered. To our knowledge, this is the first report demonstrating that α-bisabolol inhibits A. fumigatus growth specifically via suppressing fungal 24-SMT. Since this enzyme is a specific fungal enzyme not reported to exist in mammalian cells, α-bisabolol may serve as a lead compound in the development of new antifungal drugs. Fungi were cultured in presence of serial concentrations of α-bisabolol (0.281–9 mM) for 3 days at 35?°C. Mycelia dry weight was determined as an index of fungal growth and ergosterol content was assessed. Microsomal 24-SMT activity was assayed in presence of α-bisabolol as an inhibitor, lanosterol as a substrate and [methyl-H3] AdoMet (S-Adenosyl methionin). In addition, the expression of erg 6 gene (24-SMT encoding gene) was determined after treatments with various concentrations of α-bisabolol. Our results demonstrated that α-bisabolol strongly inhibited A. fumigatus growth (35.53–77.17%) and ergosterol synthesis (26.31–73.77%) dose-dependently and suppressed the expression of erg 6 gene by 76.14% at the highest concentration of 9 mM. α-bisabolol inhibited the activity of 24-SMT by 99% at the concentration of 5 mM. Taken together, these results provides an evidence for the first time that α-bisabolol inhibits A. fumigatus Af239 growth via affecting microsomal ?24-sterol methyltransferase as a crucial enzyme in ergosterol biosynthetic pathway.  相似文献   

18.
19.
We have found that the medium-chain fatty acids (MCFAs) undecanoic acid (11:0), 10-undecenoic acid (11:1 Delta 10), and lauric acid (12:0) can affect the growth of Saccharomyces cerevisiae in a dose-dependent manner. The principal effect was a longer lag phase in MCFA-containing medium, although higher concentrations of 11:1 Delta 10 inhibited growth. Their relative order of inhibitory action was 11:1 Delta 10>11:0>12:0. Cellular content with MCFA supplementation was dependent on the concentration and the particular species of fatty acid, with 12:0 showing the highest relative accumulation and 11:1 Delta 10 the lowest at all concentrations. We have isolated and characterized a mutant that is hypersensitive to MCFA supplementation and is unable to grow at the normally permissive condition of 1 mM 11:1 Delta 10. However, it does not appear to accumulate higher relative levels of the fed MCFA compared to wild-type cells. Complementation of the mutant revealed that the ERG4 gene, encoding the enzyme that catalyzes the last step in ergosterol biosynthesis, had been mutated. The fatty acid composition of the erg4 Delta mutant differs only slightly from wild-type cells, mainly involving an increase in the relative amount of 12:0. These results indicate that yeast require ergosterol for optimal growth on certain MCFAs. We discuss the role ergosterol may have in cells responding to exogenous MCFAs and in supporting optimal cell growth.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号