首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. Mesenchyme cell populations prepared from proximal and distal halves of stage 20 mouse forelimb buds are shown to behave under in vitro micromass culture conditions like analogous cell populations obtained from chick embryo limb buds. While the distal cells are spontaneously chondrogenic, the proximal cells make aggregates which are only potentially chondrogenic after treatment with dibutyryl cyclic AMP. In addition, stage 20 mouse whole limb bud cells homozygous for the brachypodismH ( bp H ) mutation are shown to behave similarly to 'normal' proximal cells. Both make fewer aggregates and nodules and both have faster aggregation rates (determined as the rate of disappearance of single cells over time) in rotation cultures than 'normal' distal or whole limb bud cells. These results support the hypothesis that the bp H mutation specifically decreases the proportion of spontaneously chondrogenic mesenchyme cells (that is, distal-like cells) present at certain developmental stages in the limb bud, resulting in a prematurely high proportion of proximal-like cells.  相似文献   

2.
The patterns of orientation of individual mesenchyme cells have been evaluated in the hindlimb of the mouse embryo during the period of transition from early aggregation (Day 12) to cartilage formation (Day 13). Orientation was measured by determining the angular relationship between the Golgi-nucleus axis of each cell relative to either the longitudinal limb axis or the center of the cartilaginous aggregate. Patterns were assessed qualitatively and quantitatively in horizontal, vertical, and transverse sections of the proximal, middle, and distal precartilage mesenchyme. These analyses showed that the mesenchyme cells are oriented predominantly toward the longitudinal axes of both the early (Day 12) and late (Day 13) aggregates.  相似文献   

3.
Mesenchyme cells isolated from mouse embryo forelimb buds (stages 15 through 21) and placed in high-density micromass cultures are compared with respect to their in vitro histogenic capacities. Particular emphasis is placed on changes in in vitro chondrogenic capacity. Stage 15 mouse limb cultures form numerous aggregates which uniformly fail to differentiate into cartilage nodules. On the other hand, cartilage nodules are observed in cultures prepared from all subsequent stage limbs, although there is a linear decrease in the size of nodules between stage 16–17 and middle-late stage 21 cultures. This decrease correlates with simultaneous decreases in both the proportion of aggregating cells and the extent of dibutyryl cyclic AMP-stimulated cartilage formation. At the same time, observations indicate that the proportions of nonaggregating and nonchondrogenic mesenchyme, myogenic cells, and, perhaps, fibrogenic mesenchyme are increasing. The only exceptions to these patterns are observed in cultures from middle-late stage 21 limbs, when cartilage differentiation in situ is already extensive. Unlike earlier stage cultures, which form nearly identical numbers of aggregates and nodules, middle-late stage 21 cultures form variable numbers of aggregates, only a few of which differentiate into cartilage nodules. Middle-late stage 21 cultures also contain unexpectedly low numbers of myogenic cells/unit area of culture. Based on changes in the in vitro histogenic capacities, it is concluded that concurrent with a progression of morphogenic events in the limb, there is a progression of changes in the relative proportions of cell subpopulations. Both the existence of the different subpopulations and the changes in their relative proportions can be detected in vitro. Furthermore, it is concluded that cartilage formation in the limbs of both mouse and chick embryos probably occurs according to very similar developmental programs.  相似文献   

4.
Regionalization of embryonic fields into independent units of growth and patterning is a widespread strategy during metazoan development. Compartments represent a particular instance of this regionalization, in which unit coherence is maintained by cell lineage restriction between adjacent regions. Lineage compartments have been described during insect and vertebrate development. Two common characteristics of the compartments described so far are their occurrence in epithelial structures and the presence of signaling regions at compartment borders. Whereas Drosophila compartmental organization represents a background subdivision of embryonic fields that is not necessarily related to anatomical structures, vertebrate compartment borders described thus far coincide with, or anticipate, anatomical or cell-type discontinuities. Here, we describe a general method for clonal analysis in the mouse and use it to determine the topology of clone distribution along the three limb axes. We identify a lineage restriction boundary at the limb mesenchyme dorsoventral border that is unrelated to any anatomical discontinuity, and whose lineage restriction border is not obviously associated with any signaling center. This restriction is the first example in vertebrates of a mechanism of primordium subdivision unrelated to anatomical boundaries. Furthermore, this is the first lineage compartment described within a mesenchymal structure in any organism, suggesting that lineage restrictions are fundamental not only for epithelial structures, but also for mesenchymal field patterning. No lineage compartmentalization was found along the proximodistal or anteroposterior axes, indicating that patterning along these axes does not involve restriction of cell dispersion at specific axial positions.  相似文献   

5.
The inhibition of chondrogenesis by vitamin A was examined in mouse limb mesenchyme cultures. Chondrogenesis in control cultures was characterized by increased synthesis of proteoglycans composed predominantly of chondroitin sulfate. The proteoglycans synthesized in vitamin A cultures were smaller than those from cartilage and were found to contain mainly heparan sulfate and dermatan sulfate. No indication of increased proteoglycan degradation resulting from vitamin A treatment was observed. The similarity in size and glycosaminoglycan composition of proteoglycans from control cultures prior to chondrogenesis and vitamin A cultures suggests that vitamin A maintains the cells in a mesenchyme-like state. Vitamin A also stimulated the mannosylation of a specific fraction of glycopeptides.  相似文献   

6.
7.
Many of the morphological defects associated with embryonic alcohol exposure are a result of cell death. During limb development, ethanol administration produces cell death in the limb and digital defects, including postaxial ectrodactyly. Because an accumulation of reactive oxygen species (ROS) is produced in adult and embryonic tissues by ethanol exposure, this investigation examines the possibility that ethanol-induced cell death in the limb is a result of ROS. Using an in vitro primary culture of limb mesenchyme, the effects of hydrogen peroxide (H2O2) and ethanol on cell death and differentiation were examined. In addition, a dichlorofluorescein diacetate assay was performed to determine the relative intracellular ROS levels after exposure to several concentrations of ethanol and H2O2. Exposure of 1 to 100 microM H2O2 resulted in a 1.08-1.21 times control increase in cartilage matrix accumulation. Cell death was increased 1.69-2.76 times the untreated control value. Production of ROS ranged from 1.25-1.51 times untreated controls. Ethanol exposure of 0.25 to 1.00% (v/v) did not affect cartilage matrix accumulation but resulted in an increase of cell death (1.45-2.31 times untreated control). Intracellular ROS levels after ethanol exposure increased 1.08-1.15 times control but were lower than that produced by 1 microM H2O2. On the basis of the correlation between ROS level produced by H2O2, it was concluded that ethanol-induced cell death in limb mesenchyme is a result of a non-ROS-mediated mechanism. Therefore, in addition to ethanol-induced cell death mediated by ROS reported in the literature, ethanol-induced cell death can be induced in limb mesenchyme by mechanisms that are not dependent upon ROS.  相似文献   

8.
Chondrogenesis of limb bud mesenchyme in vitro: stimulation by cations   总被引:7,自引:0,他引:7  
To analyze the nature of cell-cell interactions in chondrogenesis, two cations that influence these interactions, calcium and poly-L-lysine (PL), were tested for their effects on chondrogenesis in vitro. High density cultures of chick limb bud mesenchyme (Hamilton-Hamburger stages 23/24), were exposed to culture media containing calcium (0.6-3.3 mM) or PL (1-10 micrograms/ml). Both cations stimulated chondrogenesis in a dose-dependent manner, and also promoted cartilage formation in normally non-chondrogenic, low cell density cultures. Chondrogenesis was assayed based on cartilage nodule number, [35S]sulfate incorporation, and expression of type II collagen as detected by immunohistochemistry. The calcium effect was not mimicked by other divalent cations (Cd, Co, Ni, Mg, Mn, and Sr). The effect of PL was dependent on its Mr (greater than or equal to 14K) and charge, and was mimicked by poly-D-lysine but not by lysine or other analogs of PL or lysine (epsilon-amino caproic acid, lysozyme, poly-L-arginine, and spermidine). Calcium and PL probably act by different mechanisms since their effects were additive, and required their presence on different days of culture: calcium acted on Day 1, and PL on Day 2. It is proposed that calcium may play a role in the cell aggregation phase of chondrogenesis whereas PL, or a naturally occurring polypeptide of similar nature, may promote chondrogenesis by crosslinking specific anionic components of the cell surface or extracellular matrix.  相似文献   

9.
10.
This paper contains observations and experiments which collectively demonstrate a requirement for cell-cell interactions among limb bud mesenchyme cells during chondrogenic differentiation. Limb bud cells isolated from brachypodismH (bpH) and wild-type mouse embyros between Thieler stage 16–17 and midstage 21 were compared with respect to their abilities to undergo chondrogenic differentiation in high-density micromass cultures. Nodules formed by dissociated Day 12 (stage 20) bpH limb bud cells have been reported previously to be abnormally reduced in size and number, and delayed in formation. We corroborate these results, but find that bpH cultures prepared from earlier-stage limb buds (between stages 16–17 and early stage 21) are progressively more like wild-type cultures. Stage 16–17 bpH cultures at 72 hr actually contain normal numbers of and size nodules, while stage 18 bpH cultures are intermediate between stages 16–17 and stage 21 in nodule formation. On the other hand, we also find that the initial rate of aggregate formation is normal even in bpH cultures prepared from stage 20 cultures in which nodule formation is not normal. Preparation of cultures composed primarily of early stage 21 bpH limb bud cells mixed with small quantities (e.g., 5%) of stage 16–17 wild-type limb bud cells showed significant increases in cartilage nodule formation over control cultures composed only of early stage 21 bpH cells. Greater proportions of wild-type cells obtained from embryos older than stages 16–17 were required for the same degree of normalization, supporting the hypothesis that a specific cell type, whose proportion decreases normally in the limb bud over time, is required to increase in vitro chondrogenesis by bpH cells. Additionally, cultures containing stage 23 chick limb cells and early stage 21 bpH cells at a ratio of 1:20 contained wild-type levels of nodules per square millimeter of culture. Thus, bpH cells appear to respond to chondrogenic inductive signals from normal limb mesenchyme cells. In order to test for the ability of bpH limb bud mesenchyme to induce chondrogenesis, stage 16–17 bpH and wild-type limb bud cells, which form identical numbers of aggregates and nodules in culture, were each mixed with early stage 21 bpH cells at ratios of 1:20, 1:10, and 1:3. Although low proportions of wild-type stage 17 cells significantly increased the number of aggregates and nodules in these mixed cultures, low proportions of bpH stage 16–17 cells did not. It is, therefore, concluded that the primary defect of the bpH mutation is likely to reside in the reduced ability of a specific mesenchyme cell subpopulation to provide an inductive stimulus for chondrogenesis.  相似文献   

11.
Accelerated maturation of primate testis by xenografting into mice   总被引:23,自引:0,他引:23  
Testicular maturation and sperm production throughout the life of the male form the basis of male fertility. It is difficult to elucidate the intricate processes controlling testicular maturation and spermatogenesis in primates in vivo due to the long time span required for sexual maturation and also to the lack of accessible in vitro or in vivo models of primate spermatogenesis. Ectopic xenografting of neonatal testis tissue into mice provides an accessible model to study and manipulate the propagation and differentiation of male germ cells from immature donor animals. However, it was not clear whether this approach would be applicable to slowly maturing primates. Here we report that grafting of testis tissue from immature rhesus monkeys (Macaca mulatta) into host mice resulted in the acceleration of testicular maturation and production of fertilization-competent sperm in testis xenografts. The system reported here provides a powerful, practical approach to study timing and control of testicular maturation and regulation of primate spermatogenesis without the necessity for experimentation in primates. This approach could potentially be applied to produce fertile sperm from sexually immature individuals of rare or valuable primate species or from prepubertal boys undergoing sterilizing therapy for cancer.  相似文献   

12.
The slaty (Dct(slt)) mutation is known to reduce the activity of dopachrome tautomerase in melanocytes and to reduce the melanin content in skin, hairs and eyes. Although the melanosomes in slaty melanocytes are reported to be eumelanosome-like, detailed melanosome biogenesis is not well studied. To address this point, melanosomes in neonatal epidermal melanocytes from wild-type (Dct+/Dct+) mice at the slaty locus as well as its congenic mouse mutant (Dct(slt)/Dct(slt)) in serum-free primary culture were observed under the electron microscope. Wild-type melanocytes possessed exclusively elliptical melanosomes with internal longitudinal structures, whereas in mutant melanocytes, numerous spherical melanosomes with globular depositions of pigment and elliptical melanosomes as well as mixed type of the two melanosomes were observed. Mature stage IV melanosomes were greatly decreased in mutant melanocytes, whereas immature stage III melanosomes were more numerous than in wild-type melanocytes. These results suggest that the slaty mutation affects the morphology and maturation of melanosomes in mouse melanocytes.  相似文献   

13.
14.
Epithelial-mesenchymal interactions are essential for both limb outgrowth and pattern formation in the limb. Molecules capable of communication between these two tissues are known and include the signaling molecules SHH and FGF4, FGF8 and FGF10. Evidence suggests that the pattern and maintenance of expression of these genes are dependent on a number of factors including regulatory loops between genes expressed in the AER and those in the underlying mesenchyme. We show here that the mouse mutation dominant hemimelia (Dh) alters the pattern of gene expression in the AER such that Fgf4, which is normally expressed in a posterior domain, and Fgf8, which is expressed throughout are expressed in anterior patterns. We show that maintenance of Shh expression in the posterior mesenchyme is not dependent on either expression of Fgf4 or normal levels of Fgf8 in the overlying AER. Conversely, AER expression of Fgf4 is not directly dependent on Shh expression. Also the reciprocal regulatory loop proposed for Fgf8 in the AER and Fgf10 in the underlying mesenchyme is also uncoupled by this mutation. Early during the process of limb initiation, Dh is involved in regulating the width of the limb bud, the mutation resulting in selective loss of anterior mesenchyme. The Dh gene functions in the initial stages of limb development and we suggest that these initial roles are linked to mechanisms that pattern gene expression in the AER.  相似文献   

15.
The mechanisms that control proliferation and differentiation of embryonic lung mesenchyme are largely unknown. We describe an explant system in which exogenous recombinant N-Sonic Hedgehog (N-Shh) protein sustains the survival and proliferation of lung mesenchyme in a dose-dependent manner. In addition, Shh upregulates several mesenchymal cell markers, including its target gene Patched (Ptc), intercellular signaling genes Bone Morphogenetic Protein-4 (Bmp4) and Noggin (Nog), and smooth muscle actin and myosin. In explants exposed to N-Shh in the medium, these products are upregulated throughout the mesenchyme, but not in the periphery. This exclusion zone correlates with the presence of an overlying mesothelial layer, which, as in vivo, expresses Fibroblast Growth Factor 9 (Fgf9). Recombinant Fgf9 protein inhibits the differentiation response of the mesenchyme to N-Shh, but does not affect proliferation. We propose a model for how factors made by two epithelial cell populations, the inner endoderm and the outer jacket of mesothelium, coordinately regulate the proliferation and differentiation of the lung mesoderm.  相似文献   

16.
Evidence is presented for a concomitant storage of α-Neo-endorphin and dynorphin immunoreactivities in neurons of the rat brain. Antisera were raised against the structurally related opioid peptides dynorphin(1–17) and α-Neo-endorphin. Both antisera were highly specific for their respective antigen. Thus, the α-Neo-endorphin antisera did not crossreact with dynorphin and the dynorphin antisera did not crossreact with α-Neo-endorphin. Both antisera were also not cross-reactive with leu-enkephalin which is contained within the sequence of both dynorphin and α-Neo-endorphin. The antisera were used for immunofluorescent staining of frozen sections through brains from rats which had been treated with colchicine 48 hours prior to death. Both antisera revealed strong and specific immunoreactivities of magnocellular neurons in the supraoptic, retrochiasmatic supraoptic and paraventricular nuclei. Neuronal fiber systems in various areas of the brain were also labeled by the two antisera. Consecutive immunostaining of the same sections, first with dynorphin antisera and — after electrophoretic elution of the antibodies — with α-Neo-endorphin antisera or vice versa, showed that immunoreactivities for the two peptides are contained within the same hypothalamic magnocellular neurons. The neuronal fiber systems for α-Neo-endorphin and dynorphin also showed a close overlap. These studies demonstrating colocalization raise the question as to whether the two peptides have a common origin from a single precursor molecule.  相似文献   

17.
Mutations in the Bone Morphogenetic Protein (BMP) pathway are associated with a range of defects in skeletal formation. Genetic analysis of BMP signaling requirements is complicated by the presence of three partially redundant BMPs that are required for multiple stages of limb development. We generated an inducible allele of a BMP inhibitor, Gremlin, which reduces BMP signaling. We show that BMPs act in a dose and time dependent manner in which early reduction of BMPs result in digit loss, while inhibiting overall BMP signaling between E10.5 and E11.5 allows polydactylous digit formation. During this period, inhibiting BMPs extends the duration of FGF signaling. Sox9 is initially expressed in normal digit ray domains but at reduced levels that correlate with the reduction in BMP signaling. The persistence of elevated FGF signaling likely promotes cell proliferation and survival, inhibiting the activation of Sox9 and secondarily, inhibiting the differentiation of Sox9-expressing chondrocytes. Our results provide new insights into the timing and clarify the mechanisms underlying BMP signaling during digit morphogenesis.  相似文献   

18.
It has been demonstrated that differences exist in the lateral mobility of Con A- and WGA-binding sites in the membranes of normal and brachypod mouse limb mesenchymal cells (Hewitt et al., 1978). The work presented here investigates the involvement of microtubules and microfilaments as mediators of binding site mobility in this system. Treatment of cells with colchicine suggests that microtubules are not involved in the mobility of either type of lectin-binding site. Disruption of microfilaments with cytochalasin B prevents the redistribution of Con A-binding sites but not those of WGA. the results were found to be the same for both genotypes. This suggests that the differences which have been found between genotypes are related to some mechanism of restraining the lateral mobility of lectin binding sites other than by attachment to microtubules and microfilaments.  相似文献   

19.
Undifferentiated limb bud mesenchyme consists of at least two separate, possibly predetermined, populations of progenitor cells, one derived from somitic mesoderm that gives rise exclusively to skeletal muscle and one derived from somatopleural mesoderm that gives rise to the cartilage and connective tissue of the limb. In the present study, we demonstrate that the inherent migratory capacity of myogenic precursor cells can be used to physically separate the myogenic and chondrogenic progenitor cells of the undifferentiated limb mesenchyme at the earliest stages of limb development. When the undifferentiated mesenchyme of stage 18/19 chick embryo wing buds or from the distal subridge region of stage 22 wing buds is placed intact upon the surface of fibronectin (FN)-coated petri dishes, a large population of cells emigrates out of the explants onto the FN substrates and differentiates into an extensive interlacing network of bipolar spindle-shaped myoblasts and multinucleated myotubes that stain with monoclonal antibody against muscle-specific fast myosin light chain. In contrast, the cells of the explants that remain in place and do not migrate away undergo extensive cartilage differentiation. Significantly, there is no emigration of myogenic cells out of explants of stage 25 distal subridge mesenchyme, which lacks myogenic progenitor cells. Myogenic precursor cells stream out of mesenchyme explants in one or occasionally two discrete locations, suggesting they are spatially segregated in discrete regions of tissue at the time of its explantation. There are subtle overall differences in the morphologies of the myogenic cells that form in stage 18/19 and stage 22 distal subridge mesenchyme explants. Finally, groups of nonmyogenic nonfibroblastic cells which are fusiform-shaped and oriented in distinct parallel arrays characteristically are found along the periphery of stage 18/19 wing mesenchyme explants. Our observations provide support for the concept that undifferentiated limb mesenchyme consists of independent subpopulations of committed precursor cells and provides a system for studying the early determinative and regulatory events involved in myogenesis or chondrogenesis.  相似文献   

20.
Limb buds from 4- and 4.5-week-old human embryos were cultured on agar medium consisting of Medium 199, chick embryo extract and horse serum for 4 days with or without thalidomide (1-1.5 microgram/ml), and the direct effect of thalidomide was examined morphologically in histological preparations. In the explants treated with thalidomide, mitotic figures of mesenchymal cells were significantly decreased both in overall explant and in mesenchymal cell aggregates, but the extracellular matrix in the mesenchymal cell aggregates was seen in the experimental and control explants. These findings suggest that thalidomide affects undifferentiated and differentiated mesenchymal cell proliferation but not the chondrogenic capacity of the mesenchyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号