首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inhibition of photosynthesis after exposure to solar radiation was investigated in the marine green alga Dunaliella salina by monitoring photosynthetic optimal quantum yield Fv/Fm and efficiency of oxygen production. Samples were exposed to solar radiation in Ancient Korinth, Greece (37°58′ N, 23°0′ E) in August 1994. Within 30 min, Fv/Fm and efficiency of oxygen production decreased with similar kinetics with increasing exposure time. The inhibition, however, diminished when ultraviolet radiation was progressively excluded by means of colour filter glasses. Samples exposed for 3 h showed complete or partial recovery of photosynthesis, with almost the same rate under all irradition conditions. The fit of the experimental data with an analytical model describing inhibition of photosynthesis as a function of a linear combination of the photon fluence in the UV-B, UV-A and PAR allows one to estimate the relative mean effectiveness for inhibition by the three spectral ranges [about 2 × 10?4, 4 × 10?6 and 2 × 10?7 (μmol photons m?2)?1 for UV-B, UV-A and PAR, respectively].  相似文献   

2.
Siderophore-bound iron in the peribacteriod space of soybean root nodules   总被引:2,自引:0,他引:2  
Water-soluble, non-leghemoglobin iron (125 µmol kg-1 wet weight nodule) is found in extracts of soybean root nodules. This iron is probably confined to the peribacteroid space of the symbiosome, where its estimated concentration is 0.5 – 2.5 mM. This iron is bound by siderophores (compounds binding ferric iron strongly) which are different for each of the three strains of Bradyrhizobium japonicum with which the plants were inoculated. One of these, that from nodules inoculated with strain CC 705, is tentatively identified as a member of the pseudobactin family of siderophores. Leghemoglobin is present in only very small amounts in the peribacteroid space of symbiosomes isolated from soybean root nodules, and may be absent from the peribacteroid space of the intact nodule.  相似文献   

3.
Many isoperoxidases with indole-3-acetic acid oxidase (IAA) and syringaldazine oxidase activities were detected by polyacrylamide gel electrophoresis in soybean root nodules [ Glycine max (L.) Merrill, cv. Asgrow], detached at the onset of flowering. The kinetics of the two activities were studied with some of the isoperoxidases partially purified by ion exchange chromatography. IAA oxidase activity of the cationic isoforms showed a sigmoidal kinetic behaviour and a higher substrate affinity than the anionic ones, whereas typical saturation kinetics were found with an anionic fraction that contained leghemoglobins. So, nodule IAA oxidase activity may mainly be displayed by the cationic isoforms. These cationic isoperoxidases had high affinity towards syringaldazine and they also may be associated with cell wall rigidification.  相似文献   

4.
Membrane lipids in soybean nodules may undergo oxidative degradation resulting in the loss of membrane structural integrity and physiological activities. One of the final products of lipid peroxidation is malondialdehyde (MDA), which can react with thiobarbituric acid (TBA) in vitro to form a chromogenic adduct, a Schiff base product that can be measured spectrophotometrically. MDA formation was quantified in the nodules as well as in the adjacent root tissue. Lipid peroxidation was initially high in soybean nodules induced by Bradyrhizobium japonicum, but sharply declined following an increase in both leghemoglobin content and nitrogen fixation rate. Lipid peroxidation was 2 to 4 times higher in the nodules than in their corresponding adjoining root tissue. Malondialdehyde levels in ineffective nodules were 1.5 times higher than those in effective nodules. MDA formation was also shown to occur in the ‘leghemoglobin-free’ cytosolic fraction, the ‘leghemoglobin’ fraction, and the nodule tissue pellet. Antioxidants, such as reduced ascorbic acid, glutathione, and 8-hydroxyquinoline, caused a partial suppression of lipid peroxidation, whereas ferrous sulfate, hydrogen peroxide, iron EDTA, disodium-EDTA, and β-carotene induced MDA formation. In contrast, quenchers of oxygen free radicals such as HEPES, MES, MOPS, PIPES, phenylalanine, Tiron, thiourea, sodium azide, and sodium cyanide (uncouplers of oxidative phosphorylation) caused somewhere between a 12 to 70 percnt; reduction in MDA production. TBA-reactive products were formed despite the incorporation of superoxide dismutase, proxidase, and catalase into the reaction mixture.  相似文献   

5.
Spectral balance and UV-B sensitivity of soybean: a field experiment   总被引:7,自引:5,他引:7  
Soybean [Glycine max (L.) Merr.] cultivar Essex was grown and tested for sensitivity to UV-B radiation (280–320 nm) under different combinations of UV-A (320–400 nm) and PFD (400–700 nm) radiation in four simultaneous field experiments. The radiation conditions were effected with combinations of filtered solar radiation and UV-B and UV-A lamps electronically modulated to track ambient radiation. Significant UV-B-caused decreases in total aboveground production and growth were seen only when PFD and UV-A were reduced to less than half their flux in sunlight. When PFD was low, UV-A appeared to be particularly effective in mitigating UV-B damage. However, when PFD was high, substantial UV-A did not appear to be required for UV-B damage mitigation. Leaf chlorophyll fluorescence did not indicate photosynthetic damage under any radiation combination. With UV-B, leaves in all experiments exhibited increased UV-absorbing pigments and decreased whole-leaf UV transmittance. Results of these field experiments indicate difficulties in extrapolating from UV-B experiments conducted in glasshouse or growth cabinet conditions to plant UV-B sensitivity in the field. Implications for UV radiation weighting functions in evaluating atmospheric ozone reduction are also raised.  相似文献   

6.
The distribution of leghemoglobin (Lb) in resin-embedded root nodules of soybean (Glycine max (L.) Merr.) was investigated using immunogold labeling. Using anti-Lb immunoglobulin G and protein A-gold, Lb or its apoprotein was detected both in cells infected by Bradyrhizobium japonicum and in uninfected interstitial cells. Leghemoglobin was present in the cytoplasm, exclusive of the organelles, and in the nuclei of both cell types. In a comparison of the density of labeling in adjacent pairs of infected and uninfected cells, Lb was found to be about four times more concentrated in infected cells. This is the first report of Lb in uninfected cells of any legume nodule; it raises the possibility that this important nodule-specific protein may participate in mediating oxygen flow to host plant organelles throughout the infected region of the nodule.Abbreviations BSA bovine serum albumin - IgG immunoglobulin G - kDA kilodalton - Lb leghemoglobin - TBST Tris-buffered saline plus Tween 20  相似文献   

7.
Santas  Regas  Koussoulaki  A.  Häder  D.-P. 《Plant Ecology》1997,128(1-2):93-97
Daily and weekly fluctuations of PAR, UV-A, and UV-B have been continuously monitored for 5 months in Ancient Korinthos, Greece (37°58 N, 23°0 E) using a calibrated instrument based on 3 sharp band sensors. Daily dose ranged between 521–12 006 kJ m-2 for PAR; 52–1, 239 kJ m-2 for UV-A; and 0.66–22.5 kJ m2 for UV-B. Weekly dose ranged between 16 778-81 788 kJ m-2 for PAR; 1 406–8 517 kJ m-2 for UV-A; and 18–151 kJ m-2 for UV-B. UV-B/PAR and UV-A/PAR ratio distribution, however, does not follow closely PAR fluctuations. Generally, the UV-B/PAR and UV-A/PAR ratios were high in bright light conditions (2.1×10-3, 118×10-3) and low in darker weeks (0.9×10-3, 63×10-3. The UV-B/UV-A ratio exhibits smaller fluctuations with season (20x1×10-3, 12×10-3). Attention is drawn to the effects of sudden changes in ambient radiation and to the ratios of UV-B, UV-A, and PAR.  相似文献   

8.
9.
10.
The spatial expression of specific classes of leghemoglobin mRNA corresponding to divergent classes of alfalfa leghemoglobin (Lb) isomers was analyzed by in situ hybridization of oligonucleotide probes to root nodule cryosections. The aim of this study was to determine whether structural changes in the nodule may contribute to the shift in Lb protein isomer expression observed during root nodule development. The co-localization of the diverse Lb mRNAs suggests that this is unlikely to be the case.Abbreviations Lb leghemoglobin - SDS sodium dodecyl sulfate - SSC sodium chloride, sodium citrate solution  相似文献   

11.
Tropical regions receive the highest level of global solar ultraviolet (UV) radiation especially UV-B (280-320 nm). The average daily dose of the UV-B radiation in Madurai, South India (10°N) is 10 kJ m-2. This is approximately 50% more than the average daily UV-B radiation in many European countries. A field study was conducted using selective filters to remove either the UV-B (< 320 nm) or UV-B/A (<400 nm) of the solar spectrum, and the effects were followed inCyamopsis tetragonoloba, Vigna mungo, andVigna radiata to determine their sensitivity to UV. When compared to ambient radiation, exclusion of solar UV-B increased the seedling height, leaf area, fresh weight and dry weight and the crop yield by 50% in the case ofCyamopsis, and the extent of such increase was slightly less under UV-B/A exclusion. InV. mungo a significant reduction was seen in solar UV excluded plants whileV. radiata was found to be unaffected.  相似文献   

12.
In soybean (Glycine max (L.) Merr.) the uninfected cells of the root nodule are responsible for the final steps in ureide production from recently fixed nitrogen. Stereological methods and an original quantitative method were used to investigate the organization of these cells and their spatial relationships to infected cells in the central region of nodules of soybean inoculated with Rhizobium japonicum strain USDA 3I1B110 and grown with and without nitrogen (as nitrate) in the nutrient medium. The volume occupied by the uninfected tissue was 21% of the total volume of the central infected region for nodules of plants grown without nitrate, and 31% for nodules of plants grown with nitrate. Despite their low relative volume, the uninfected cells outnumbered the much larger infected cells in nodules of plants grown both without and with nitrate. The surface density of the interface between the ininfected and infected tissue in the infected region was similar for nodules in both cases also, the total range being from 24 to 26 mm2/mm3. In nodules of plants grown without nitrate, all sampled infected cells were found to be in contact with at least one uninfected cell. The study demonstrates that although the uninfected tissue in soybean nodules occupies a relatively small volume, it is organized so as to produce a large surface area for interaction with the infected tissue.  相似文献   

13.
增强UV-B辐射对大豆胚轴DNA损伤、修复和蛋白质含量的影响   总被引:17,自引:1,他引:17  
大气平流层臭氧层减薄引起到达地表的 UV- B辐射增强。为探讨在增强 UV- B辐射下植物细胞 DNA的损伤修复和蛋白质含量的关系 ,利用 3H- Td R掺入法 ,研究了在 8.2 2 k J/(m2 d)和 12 .4 2 k J/(m2 d) U V- B辐射 (相当于兰州地区大气平流层臭氧减薄约 12 %和 2 0 % )胁迫下 ,大豆胚轴细胞 DNA合成和非按期合成 (UDS)变化 ,并测定了胚轴蛋白质含量变化 ,结果显示 ,UV- B辐射导致 DNA损伤 ,并诱导了 DNA损伤的修复 ,胚轴细胞 UDS效应增强 ,U DS指数增大。低 UV- B辐射强度下 ,胚轴蛋白质含量增加 ,可能是 U V- B诱导了一些与抗性有关的基因表达 ,导致一些新的与抗性有关的蛋白质合成 ;在高强度 UV- B辐射下 ,U DS指数与低强度辐射下无显著差异 (P=0 .0 5 ) ,但蛋白含量较低强度辐射下显著下降 (P=0 .0 5 ) ,说明高强度 UV- B辐射加重了 DNA损伤 ,而修复并未加强 ,并且高强度辐射抑制基因的正常表达和蛋白质合成。这些蛋白质的合成可能与大豆对 UV- B辐射的抗性有关。  相似文献   

14.
Sato  Takashi  Onoma  Noriyasu  Fujikake  Hiroyuki  Ohtake  Norikuni  Sueyoshi  Kuni  Ohyama  Takuji 《Plant and Soil》2001,237(1):129-135
Soybean nodules contain four major leghemoglobin (Lb) components, Lba, Lbc1, Lbc2 and Lbc3. A sensitive and selective method for quantitative analysis of the four Lb components was devised with capillary isoelectric focusing (CIEF). The changes in the concentrations of four Lb components in nodules during the initial stages of development were compared between hypernodulating soybean mutant NOD1–3 and its parent cv. Williams. The hydroponically cultivated soybean plants were periodically sampled. All the visible nodules were collected from the roots, and then the four Lb components in the largest nodules were analyzed with the CIEF method. In NOD1–3 Lbs were initially detected at 19 days after sowing (DAS), a few days earlier than in Williams at 22 DAS. The Lbcs (Lbc1, Lbc2 and Lbc3) were the main component at the earliest nodule growth stage, and the relative proportion of Lba increased with nodule growth in both NOD1–3 and Williams. This result is in agreement with previous observation, and the CIEF method is considered to be useful for Lb components analysis to define their function and gene expression.  相似文献   

15.
The ability of legume nodules to regulate their permeability to gas diffusion has been attributed to physiological control over the size and distribution of gas-filed intercellular spaces within the nodule cortex. To examine the size and distribution of intercellular spaces and to determine whether they were filled with gas (high diffusion permeability) or liquid (low diffusion permeability), whole nodules were frozen in liquid nitrogen slush (-210°C), and then either cryo-fractured or cryo-planed before being examined by cold-stage scanning electron microscopy (SEM). The cryo-planed tissue was found to have many advantages over cryo-fractured nodules in providing images which were easier to interpret and quantify. Intercellular spaces throughout the nodule were examined in both tangential and medial planed faces. Since no differences were observed between views in either the size or shape of the open intercellular spaces, it was concluded that the intercellular spaces of nodules were not radially oriented as assumed in many mathematical models of gas diffusion. The inner cortex region in the nodules had the smallest intercellular spaces compared to other zones, and less than 10% of the intercellular spaces were occluded with any type of material in the central zone regions. Vacuum infiltration of nodules with salt solutions and subsequent cryo-planing for SEM examination showed that open and water-filled intercellular spaces could be differentiated. The potential is discussed for using this method to study the mechanism of diffusion barrier regulation in legume nodules.  相似文献   

16.
The influence of solar UV-A and UV-B radiation at Beltsville, Maryland, on growth and flavonoid content in four cultivars of Cucumis sativus L. (Ashley, Poinsett, Marketmore, and Salad Bush cucumber) was examined during the summers of 1994 and 1995. Plants were grown from seed in UV exclusion chambers consisting of UV-transmitting Plexiglas, lined with Llumar to exclude UV-A and UV-B, polyester to exclude UV-B, or cellulose acetate to transmit UV-A and UV-B. Despite previously determined differences in sensitivity to supplemental UV-B radiation, all four cultivars responded similarly to UV-B exclusion treatment. After 19–21 days, the four cultivars grown in the absence of solar UV-B (polyester) had an average of 34, 55, and 40% greater biomass of leaves, stems, and roots, respectively, 27% greater stem height, and 35% greater leaf area than those grown under ambient UV-B (cellulose acetate). Plants protected from UV-A radiation as well (Llumar) showed an additional 14 and 22% average increase, respectively, in biomass of leaves and stems, and a 22 and 19% average increase, respectively, in stem elongation and leaf area over those grown under polyester. These findings demonstrate the extreme sensitivity of cucumber not only to present levels of UV-B but also to UV-A and suggest that even small changes in ozone depletion may have important biological consequences for certain plant species.  相似文献   

17.
18.
Exclusion of UV (280–380 nm) radiation from the solar spectrum can be an important tool to assess the impact of ambient UV radiation on plant growth and performance of crop plants. The effect of exclusion of UV-B and UV-A from solar radiation on the growth and photosynthetic components in soybean (Glycine max) leaves were investigated. Exclusion of solar UV-B and UV-B/A radiation, enhanced the fresh weight, dry weight, leaf area as well as induced a dramatic increase in plant height, which reflected a net increase in biomass. Dry weight increase per unit leaf area was quite significant upon both UV-B and UV-B/A exclusion from the solar spectrum. However, no changes in chlorophyll a and b contents were observed by exclusion of solar UV radiation but the content of carotenoids was significantly (34–46%) lowered. Analysis of chlorophyll (Chl) fluorescence transient parameters of leaf segments suggested no change in the F v/F m value due to UV-B or UV-B/A exclusion. Only a small reduction in photo-oxidized signal I (P700+)/unit Chl was noted. Interestingly the total soluble protein content per unit leaf area increased by 18% in UV-B/A and 40% in UV-B excluded samples, suggesting a unique upregulation of biosynthesis and accumulation of biomass. Solar UV radiation thus seems to primarily affect the photomorphogenic regulatory system that leads to an enhanced growth of leaves and an enhanced rate of net photosynthesis in soybean, a crop plant of economic importance. The presence of ultra-violet components in sunlight seems to arrest carbon sequestration in plants. An erratum to this article can be found at  相似文献   

19.
We investigated the effects of UV-A and UV-B enhanced radiation on plants ofPhaseolus mungo. Low doses caused varying responses in such growth and yield components as shoot and root lengths, leaf area, fresh mass and dry matter, pod numbers, and seed numbers and weights. Compared with the performances of the control plants, supplementation with UV-A radiation promoted overall growth, while UV-B radiation inhibited development Moreover, both sources of radiation caused reduced yields, although this effect was comparatively less in plants treated with UV-A radiation.  相似文献   

20.
Ammonia, the primary product of nitrogen fixation is rapidly incorporated into a number of amino acids such as glutamate and aspartate. A novel enzyme system glutamine: 2-oxoglutarate aminotransferase oxidoreductase, which probably has an important role in ammonia assimilation has been detected, in the present studies, in the rhizobial fraction of soybean root nodules and in Rhizobium japonicum grown in culture. The role of this latter enzyme and other enzymes such as glutamate dehydrogenase, aspartate aminotransferase and alanine aminotransferase in ammonia assimilation by soybean nodules is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号