首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A cDNA encoding adenylate isopentenyltransferase (AIPT) was cloned from young leaves of mulberry (Morus alba) by a homology-based RT-PCR. A recombinant enzyme expressed in Escherichia coli catalyzed prenyl transfer from DMAPP to the N6 amino group of ADP and ATP, respectively, while AMP was a poor substrate of the enzyme. Interestingly, M. alba AIPT also accepted dADP, dATP, CDP, and GDP as the prenyl acceptors, and IPP, HMBPP, and GPP as the prenyl donors, to produce a series of cytokinin analogs. In particular, it was remarkable that the enzyme accepted HMBPP to produce trans-zeatin riboside phosphates, which suggested that trans-zeatin may be also produced from adenosine phosphates and HMBPP. Finally, alanine-scanning mutagenesis of conserved D49, Y54, F93, F120, Y153, F157, W159, Y170, Y217, and Q255, resulted in significant loss of enzyme activity except Y170A, confirming the functional and structural importance of the residues.  相似文献   

2.
J K Batra  C M Lin  E Hamel 《Biochemistry》1987,26(18):5925-5931
Pursuing the observation of Carlier and Pantaloni [Carlier, M.-F., & Pantaloni, D. (1982) Biochemistry 21, 1215-1224] that adenosine 5'-(beta, gamma-imidotriphosphate) (pNHppA) strongly inhibited tubulin-independent phosphatases in microtubule protein preparations, we observed with a number of commercial preparations of pNHppA that a major proportion of the terminal phosphate of [gamma-32P]GTP added to microtubule protein preparations was rapidly converted into ATP. Initially postulating degradation of pNHppA to AMP followed by stepwise conversion of AMP to ATP, we isolated two nucleoside monophosphate kinase activities from microtubule protein capable of generating ATP from AMP + GTP. The amounts of these enzymes in microtubule protein preparations, however, are probably too low to account for rapid ATP formation. Instead, ATP formation most likely is caused by nucleoside diphosphate kinase acting on ADP contaminating commercial pNHppA preparations. Such ADP contamination was demonstrated by high-performance liquid chromatography, with the amount of ATP formed with different pNHppA preparations proportional to the amount of ADP contamination. Repurification of commercial pNHppA until it was free of contaminating ADP also resulted in the elimination of ATP formation. The repurified pNHppA potently inhibited GTP hydrolysis in microtubule protein preparations. In addition, especially when supplemented with equimolar Mg2+, the repurified pNHppA strongly inhibited GTP hydrolysis and microtubule assembly in reaction mixtures containing purified tubulin and heat-treated microtubule-associated proteins (which contain negligible amounts of tubulin-independent phosphatase activity). We conclude that studies of microtubule-dependent GTP hydrolysis which make use of pNHppA must be interpreted with extreme caution.  相似文献   

3.
In this study, Rv2613c, a protein that is encoded by the open reading frame Rv2613c in Mycobacterium tuberculosis H37Rv, was expressed, purified, and characterized for the first time. The amino acid sequence of Rv2613c contained a histidine triad (HIT) motif consisting of H-phi-H-phi-H-phi-phi, where phi is a hydrophobic amino acid. This motif has been reported to be the characteristic feature of several diadenosine 5′,5′′′-P1,P4-tetraphosphate (Ap4A) hydrolases that catalyze Ap4A to adenosine 5′-triphosphate (ATP) and adenosine monophosphate (AMP) or 2 adenosine 5′-diphosphate (ADP). However, enzymatic activity analyses for Rv2613c revealed that Ap4A was converted to ATP and ADP, but not AMP, indicating that Rv2613c has Ap4A phosphorylase activity rather than Ap4A hydrolase activity. The Ap4A phosphorylase activity has been reported for proteins containing a characteristic H-X-H-X-Q-phi-phi motif. However, no such motif was found in Rv2613c. In addition, the amino acid sequence of Rv2613c was significantly shorter compared to other proteins with Ap4A phosphorylase activity, indicating that the primary structure of Rv2613c differs from those of previously reported Ap4A phosphorylases. Kinetic analysis revealed that the Km values for Ap4A and phosphate were 0.10 and 0.94 mM, respectively. Some enzymatic properties of Rv2613c, such as optimum pH and temperature, and bivalent metal ion requirement, were similar to those of previously reported yeast Ap4A phosphorylases. Unlike yeast Ap4A phosphorylases, Rv2613c did not catalyze the reverse phosphorolysis reaction. Taken together, it is suggested that Rv2613c is a unique protein, which has Ap4A phosphorylase activity with an HIT motif.  相似文献   

4.
Cytokinins are important plant hormones, and their biosynthesis most begins with the transfer of isopentenyl group from dimethylallyl diphosphate (DMAPP) to the N6-amino group of adenine by either adenylate isopentenyltransferase (AIPT) or tRNA–IPT. Plant AIPTs use ATP/ADP as an isopentenyl acceptor and bacterial AIPTs prefer AMP, whereas tRNA–IPTs act on specific sites of tRNA. Here, we present the crystal structure of an AIPT–ATP complex from Humulus lupulus (HlAIPT), which is similar to the previous structures of Agrobacterium AIPT and yeast tRNA–IPT. The enzyme is structurally homologous to the NTP-binding kinase family of proteins but forms a solvent-accessible channel that binds to the donor substrate DMAPP, which is directed toward the acceptor substrate ATP/ADP. When measured with isothermal titration calorimetry, some nucleotides displayed different binding affinities to HlAIPT with an order of ATP > dATP ∼ ADP > GTP > CTP > UTP. Two basic residues Lys275 and Lys220 in HlAIPT interact with the β and γ-phosphate of ATP. By contrast, the interactions are absent in Agrobacterium AIPT because they are replaced by the acidic residues Asp221 and Asp171. Despite its structural similarity to the yeast tRNA–IPT, HlAIPT has evolved with a different binding strategy for adenylate.  相似文献   

5.
The intracellular acid-soluble purine and pyrimidine derivatives of myxamoebae-swarm cells of Physarum flavicomum were investigated during growth, microcyst formation, and during adenine-inhibition of encystment, using high performance liquid chromatography (HPLC). We also studied the incorporation of exogenous radioactive adenine into the acid soluble purine derivatives and S-adenosyl-sulphur compounds separated by HPLC. The most abundant ribonucleoside monophosphate was AMP in the growing and 15 h encysting cells (NC), while it was UMP in the 15 h adenine-inhibited cells (AIC). ADP was the nucleoside diphosphate present in the greatest quantity in the growing and NC cells but it was CDP in the AIC. The nucleoside triphosphate in highest concentration was ATP, UTP, and GTP in growing, NC, and AIC, respectively. Guanosine was the most abundant nucleoside in all cells. The nucleobase occurring in greatest concentration was cytosine, cytosine and guanine, and adenine in the growing, NC, and AIC, respectively. The AMP content in the 15 h AIC was 2.1-fold higher than that of adenosine. The 15 h NC had the lowest adenylate energy charge, a value of 0.54 +/- 0.02, while the values for growing cells and the AIC were 0.62 +/- 0.02 and 0.76 +/- 0.01, respectively. [14C]-Adenine labelling studies (15 h) revealed the occurrence of purine nucleotide interconversion, as the label was detected not only in adenosine, AMP, ADP, ATP, but also in guanine, guanosine, GMP, GDP, GTP, as well as, in inosine monophosphate and xanthosine monophosphate. The percentage incorporation of the radiolabelled adenine into AMP was higher than into adenosine. An increased intracellular level of guanine nucleotides is associated with the inhibition of encystment. The extracellular adenine, rather than internal adenine sources, appears to be the primary precursor of nucleotide for S-adenosylmethionine synthesis during adenine-inhibition of encystment.  相似文献   

6.
The initial step in the de novo biosynthesis of cytokinin in higher plants is the formation of isopentenyladenosine 5'-monophosphate (iPMP) from AMP and dimethylallylpyrophosphate (DMAPP), which is catalyzed by adenylate isopentenyltransferase (IPT). Although cytokinin is an essential hormone for growth and development, the nature of the enzyme for its biosynthesis in higher plants has not been identified. Herein, we describe the molecular cloning and biochemical identification of IPTs from Arabidopsis thaliana. Eight cDNAs encoding putative IPT, designated as AtIPT1 to AtIPT8, were picked up from A. thaliana. The Escherichia coli transformants expressing the recombinant proteins excreted cytokinin species into the culture medium except for that expressing AtIPT2 that is a putative tRNA IPT. A purified recombinant AtIPT1 catalyzed the formation of iPMP from DMAPP and AMP. These results indicate that the small multigene family contains both types of isopentenyltransferase, which could synthesize cytokinin and mature tRNA.  相似文献   

7.
8.
腺苷酸转移酶(ANT)是线粒体内膜上负责能量分子传导的转运蛋白, 在细胞凋亡调控网络中有重要作用。本研究以棉铃虫幼虫组织的mRNA为模板, 根据鳞翅目昆虫ant基因编码区保守序列设计引物, 进行RT-PCR分析, 同时结合5′、3′ RACE方法扩增出棉铃虫ant基因的全长cDNA序列, cDNA全长为1 190 bp (GenBank登录号AY253868), 具有完整的开放阅读框架(ORF, 133~1 033 bp), 编码蛋白为300个氨基酸, 其中N端22个氨基酸为信号肽, 引导ANT蛋白定位于线粒体内膜。该蛋白具有3个保守的线粒体穿膜功能结构域, 形成能量分子传导的转运通道, 催化细胞质中ADP和线粒体内ATP间进行跨膜交换。通过与其他昆虫的腺苷酸转移酶蛋白序列比较, 发现该基因具有高度的保守性, 氨基酸序列同源性都在90%左右。  相似文献   

9.
Gastric ulcer was elicited in rats by reserpine (5 mg x kg-1 sc.) administration. Ulcer formation (number and severity) was measured 6, 12, 18 and 24 hr after reserpine administration. At the time of killing of the animals, tissue levels of adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP), cyclic adenosine monophosphate (cAMP) were measured enzymatically and by radioimmunoassay in the gastric fundal mucosa. The sum of ATP + ADP + AMP (adenylate pool) and the ratio of ATP x ADP-1 were calculated. It was found that (1) the tissue levels of ATP, AMP, cAMP, sum of ATP / ADP + AMP (adenylate pool) and ratio of ATP x ADP-1 increased significantly in the gastric fundal mucosa 6 hr after reserpine administration, thereafter these values decreased gradually and significantly; (2) the tissue level of ADP increased significantly in the gastric fundal mucosa 6 hr after reserpine administration, meanwhile its level increased significantly at 18 and 24 hr; (3) the value of energy charge (ATP + 0.5 ADP x ATP + ADP + AMP-1) remained unchanged; (4) the peaks of biochemical alterations in the gastric fundus mucosa preceded he appearance of ulcers. It was concluded that (1) reserpine ulcer appears after an active metabolic response in the rat gastric fundal mucosa; (2) hypoxaemic damage in the gastric fundal mucosa can be excluded as a possible underlying mechanism of ulcer formation produced by reserpine administration; (3) before the appearance of reserpine ulcer, significant changes in the feedback mechanism, system, i.e. between the ATP--membrane ATPase--ADP and the ATP--adenylate cyclase--cAMP energy systems, can be observed in the rat gastric fundal mucosa.  相似文献   

10.
Adenylate kinases are abundant nucleoside monophosphate kinases, which catalyze the phosphorylation of AMP by using ATP or GTP as phosphate donors. A previously cloned cDNA was named adenylate kinase 4 (AK4) based on its sequence similarity with known AKs but with no confirmed AK enzyme activity. In the present study the AK4 cDNA was expressed in Escherichia coli and the substrate specificity and kinetic properties of the recombinant protein were characterized. The enzyme catalyzed the phosphorylation of AMP, dAMP, CMP and dCMP with ATP or GTP as phosphate donors and AK4 also phosphorylated AMP with UTP as phosphate donor. The kinetic parameters of the enzyme were determined for AMP and dAMP with ATP as phosphate donor and for AMP with GTP as phosphate donor. AK4 showed its highest efficiency when phosphorylating AMP with GTP and a slightly lower efficiency for the phosphorylation of AMP with ATP. Among the three reactions for which kinetics were performed, dAMP was the poorest substrate. The AK4 mitochondrial localization was confirmed by expression of AK4 as a fusion protein with GFP in HeLa cells. The mitochondrial import sequence was shown to be located within the first N-terminal 11 amino acid residues, very close to the ATP-binding region of the enzyme. Import analysis suggested that the mitochondrial import sequence was not cleaved and thus the enzyme retained its activity upon entering the mitochondria. Site directed mutagenesis of amino acids Lys 4 and Arg 7 showed that these two residues were essential for mitochondrial import.  相似文献   

11.
DEAD box RNA helicases use the energy of ATP hydrolysis to unwind double-stranded RNA regions or to disrupt RNA/protein complexes. A minimal RNA helicase comprises nine conserved motifs distributed over two RecA-like domains. The N-terminal domain contains all motifs involved in nucleotide binding, namely the Q-motif, the DEAD box, and the P-loop, as well as the SAT motif, which has been implicated in the coordination of ATP hydrolysis and RNA unwinding. We present here the crystal structure of the N-terminal domain of the Thermus thermophilus RNA helicase Hera in complex with adenosine monophosphate (AMP). Upon binding of AMP the P-loop adopts a partially collapsed or half-open conformation that is still connected to the DEAD box motif, and the DEAD box in turn is linked to the SAT motif via hydrogen bonds. This network of interactions communicates changes in the P-loop conformation to distant parts of the helicase. The affinity of AMP is comparable to that of ADP and ATP, substantiating that the binding energy from additional phosphate moieties is directly converted into conformational changes of the entire helicase. Importantly, the N-terminal Hera domain forms a dimer in the crystal similar to that seen in another thermophilic prokaryote. It is possible that this mode of dimerization represents the prototypic architecture in RNA helicases of thermophilic origin.  相似文献   

12.
The effects of different doses (0.01-0.1-1.0-10.0/mg/kg-1) of beta-carotene were studied on gastric secretory responses of 4 hr pylorus-ligated rats: development of gastric mucosal damage (as assessed by number and severity of lesions) produced by intragastric administration of 0.6 M HCl; tissue level of adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP), adenylate pool (ATP + ADP + AMP), ratio of ATP X ADP-1, "energy charge" (ATP + 0.5 ADP X X (ATP + ADP + AMP)-1) (during the development of gastric mucosal damage by 0.6 M HCl and of gastric cytoprotection by beta-carotene. It was found that beta-carotene did not decrease the gastric secretory responses of 4 hr pylorus-ligated rats; The development of gastric mucosal damage could be decreased dose-dependently by the administration of beta-carotene; the ATP transformation could be decreased by beta-carotene; the tissue levels of cAMP and AMP could be increased significantly and dose-dependently by beta-carotene; the ratio of ATP X ADP-1 could be increased significantly and dose-dependently by beta-carotene; the values of adenylate pool and "energy charge" remained unchanged.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Cyclic adenosine 3':5' monophosphate (cAMP) accumulation during one hour's incubation in 10 mM theophylline and 10 mM pyruvate; initial concentrations of adenosine triphosphate (ATP) and their rate of depletion during one hour's incubation; concentrations of adenosine diphosphate (ADP), adenosine monophosphate (AMP), fructose 2,6 diphosphate (FDP), and glyceraldehyde 3-phosphate (GAP), were assayed in spermatozoa of various genotypes. No effects of transmission ratio distorting t-haplotypes (in heterozygous males) on these variables were found.  相似文献   

14.
It has been believed that the key step in cytokinin biosynthesis is the addition of a 5-carbon chain to the N(6) of AMP. To identify cytokinin biosynthesis enzymes that catalyze the formation of the isopentenyl side chain of cytokinins, the Arabidopsis genomic sequence was searched for genes that could code for isopentenyltransferases. This resulted in the identification of nine putative genes for isopentenyltransferases. One of these, AtIPT4, was subjected to detailed analysis. Overexpression of AtIPT4 caused cytokinin-independent shoot formation on calli. As shoot formation on calli normally occurs only when cytokinins are applied, it suggested that this gene product catalyzed cytokinin biosynthesis in plants. Recombinant AtIPT4 catalyzed the transfer of an isopentenyl group from dimethylallyl diphosphate to the N(6) of ATP and ADP, but not to that of AMP. AtIPT4 did not exhibit the DMAPP:tRNA isopentenyltransferase activity. These results indicate that cytokinins are, at least in part, synthesized from ATP and ADP in plants.  相似文献   

15.
After addition of 5 mM sulfite or nitrite to glucose-metabolizing cells of Saccharomyces cerevisiae a rapid decrease of the ATP content and an inversely proportional increase in the level of inorganic phosphate was observed. The concentration of ADP shows only small and transient changes. Cells of the yeast mutant pet 936, lacking mitochondrial F1ATPase, after addition of 5 mM sulfite or nitrite exhibit changes in ATP, ADP and inorganic phosphate very similar to those observed in wild type cells. They key enzyme of glucose degradation, glyceraldehyde-3-phosphate dehydrogenase was previously shown to be the most sulfiteor nitrite-sensitive enzyme of the glycolytic pathway. This enzyme shows the same sensitivity to sulfite or nitrite in cells of the mutant pet 936 as in wild type cells. It is concluded that the effects of sulfite or nitrite on ATP, ADP and inorganic phosphate are the result of inhibition of glyceraldehyde-3-phosphate dehydrogenase and not of inhibition of phosphorylation processes in the mitochondria. Levels of GTP, UTP and CTP show parallel changes to ATP. This is explained by the presence of very active nucleoside monophosphate kinases which cause a rapid exchange between the nucleoside phosphates. The effects of the sudden inhibition of glucose degradation by sulfite or nitrite on levels of ATP, ADP and inorganic phosphate are discussed in terms of the theory of Lynen (1942) on compensating phosphorylation and dephosphorylation in steady state glucose metabolizing yeast.Abbreviations ATP adenosine triphosphate - ADP adenosine diphosphate - AMP adenosine monophosphate - Pi inorganic orthophosphate Dedicated to Prof. Dr. Hans Grisebach on the occasion of his sixtieth birthday  相似文献   

16.
The rate-limiting step of cytokinin biosynthesis in Arabidopsis thaliana Heynh. is catalyzed by ATP/ADP isopentenyltransferases, A. thaliana IsoPentenyl Transferase (AtIPT)1, and AtIPT4, and by their homologs AtIPT3, AtIPT5, AtIPT6, AtIPT7, and AtIPT8. To understand the dynamics of cytokinins in plant development, we comprehensively analyzed the expression of isopentenyltransferase genes of Arabidopsis. Examination of their mRNA levels and the expression patterns of the beta-glucuronidase (GUS) gene fused to the regulatory sequence of each AtIPT gene revealed a specific expression pattern of each gene. The predominant expression patterns were as follows: AtIPT1::GUS, xylem precursor cell files in the root tip, leaf axils, ovules, and immature seeds; AtIPT3::GUS, phloem tissues; AtIPT4::GUS and AtIPT8::GUS, immature seeds with highest expression in the chalazal endosperm (CZE); AtIPT5::GUS, root primordia, columella root caps, upper part of young inflorescences, and fruit abscission zones; AtIPT7::GUS, endodermis of the root elongation zone, trichomes on young leaves, and some pollen tubes. AtIPT1, AtIPT3, AtIPT5, and AtIPT7 were downregulated by cytokinins within 4 h. AtIPT5 and AtIPT7 was upregulated by auxin within 4 h in roots. AtIPT3 was upregulated within 1 h after an application of nitrate to mineral-starved Arabidopsis plants. The upregulation by nitrate did not require de novo protein synthesis. We also examined the expression of two genes for tRNA isopentenyltransferases, AtIPT2 and AtIPT9, which can also be involved in cytokinin biosynthesis. They were expressed ubiquitously, with highest expression in proliferating tissues. These findings are discussed in relation to the role of cytokinins in plant development.  相似文献   

17.
The changes in membrane-bound ATP systems (breakdown and resynthesis) were analyzed in different experimental ulcer models (such as ETOH, HCl, NaOH, 25% NaCl-induced, pyloric ligated + epinephrine treated, stress, reserpine treated, indomethacin treated rat models) and chronic antral, duodenal and jejunal ulcers in patients. The energy system parameters (adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP), cyclic AMP (cAMP), lactate) were measured from different sites of gastrointestinal mucosa, and values of ATP/ADP, adenylate pool (ATP + ADP + AMP) and energy charge ((ATP + 0.5 ADP)/(ATP + ADP + AMP)) were calculated. The biochemical measurements were done at different times during the development of gastrointestinal mucosal lesions, without and with application of different drugs (PGI2, atropine, cimetidine) and bilateral surgical vagotomy. The aims of our present paper were: 1.) To summarize the main directions of ATP breakdown during the development of gastrointestinal lesions or ulcers in different experimental models and human beings: 2.) To summarize the biochemical steps of defense of gastrointestinal mucosa against chemicals, drugs or unknown pathogenic factors; 3.) To analyze the importance of membrane-bound ATP-dependent energy systems in order to understand the mucosal lesions and their prevention; 4.) To evaluate the real values of changes in these parameters from the point of view of ulcerogenesis and its prevention; 5.) To find some correlation between the energy parameters during mucosal damage and its prevention: 6.) To understand better the types of tissue reactions (metabolic) due to development of mucosal lesions and prevention.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
A double reactor system for the determination of fish and shellfish freshness using the freshness indicator, K-value (K=[(HxR+Hx)/(ATP+ADP+AMP+IMP+HxR+Hx)]x100), was developed, where ATP, ADP, AMP, IMP, HxR and Hx are adenosine triphosphate, adenosine diphosphate, adenosine monophosphate, inosine monophosphate, inosine and hypoxanthine, respectively. The system consisted of a pair of enzyme reactors with an oxygen electrode positioned close to the respective reactor. The enzyme reactor (I) was packed with nucleoside phosphorylase and xanthine oxidase immobilized simultaneously on chitosan beads (immobilized enzyme A). Similarly, the enzyme reactor (II) was packed with immobilized enzyme A and immobilized enzyme B (co-immobilized alkaline phosphatase and adenosine deaminase). Moreover, this reactor consisted of two layers, the enzyme A and enzyme B (1:1). A good correlation was obtained between K values, which were determination by the proposed system and by the HPLC method. One assay could be completed within 5 min. The signal for the determination of K value of fish and shellfish was reproducible within 2.3%. The long-term stability of the enzyme reactors was evaluated at 30 degrees C for 28 days.  相似文献   

19.
During synaptic transmission large amounts of ATP are released from pre- and post-synaptic sources of Torpedo electric organ. A chain reaction sequentially hydrolyses ATP to adenosine, which inhibits acetylcholine secretion. The first enzyme implicated in this extracellular ATP hydrolysis is an ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase) that dephosphorylates both ATP and ADP to AMP. This enzyme has been biochemically characterized in the synaptosomal fraction of Torpedo electric organ, having almost equal affinity for ATP as for ADP, a fact that pointed to the type-1 NTPDase enzyme. In the present work we describe the cloning and molecular characterization of the cDNA for an NTPDase from Torpedo marmorata electric organ. The clone, obtained using the RACE-PCR technique, contains and open-reading frame of 1506bp and encodes a 502 amino acids protein that exhibits high homology with other NTPDases1 from vertebrates previously identified, including those of zebrafish and Xenopus, as well as human, rat and mouse. Topology analyses revealed the existence of two transmembrane regions, two short cytoplasmic tails and a long extracellular domain containing five apyrase-conserved regions. Gene expression studies revealed that this gene is expressed in all the Torpedo tissues analyzed. Finally, activity and cellular localization of the protein encoded by this newly cloned cDNA was assessed by heterologous expression experiments involving COS-7 and HeLa cells.  相似文献   

20.
Two- to three-kilogram albino rabbits were subtotally nephrectomized and compared with sham-operated normal rabbits for the muscle content of adenosine mono (AMP)-, di (ADP)- and triphosphate (ATP) and inosine monophosphate (IMP) before and after exercise. Analysis of snap-frozen, lyophilized soleus muscle showed lower levels of AMP, ATP and total adenosine nucleotide (TAN) (p less than 0.01) and ATP/ADP (p less than 0.02) in the subtotally nephrectomized animals. IMP levels following exercise were higher in the experimental animals. Muscle adenosine nucleotide concentrations in the experimental animals were significantly different for normals, thus suggesting that minimal azotemia could adversely affect muscle function in these animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号