首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soil CO2 efflux is a major component of net ecosystem productivity (NEP) of forest systems. Combining data from multiple researchers for larger-scale modeling and assessment will only be valid if their methodologies provide directly comparable results. We conducted a series of laboratory and field tests to assess the presence and magnitude of soil CO2 efflux measurement system × environment interactions. Laboratory comparisons were made with a dynamic, steady-state CO2 flux generation apparatus, wherein gas diffusion drove flux without creating pressure differentials through three artificial soil media of varying air-filled porosity. Under these conditions, two closed systems (Li-6400-09 and SRC-1) exhibited errors that were dependent on physical properties of the artificial media. The open system (ACES) underestimated CO2 flux. However, unlike the two other systems, the ACES results could be corrected with a single calibration equation that was unaffected by physical differences in artificial media. Both scale and rank changes occurred among the measurement systems across four sites. Our work clearly shows that soil CO2 efflux measurement system × environment interactions do occur and can substantially impact estimates of soil CO2 efflux. Until reliable calibration techniques are developed and applied, such interactions make direct comparison of published rates, and C budgets estimated using such rates, difficult.  相似文献   

2.
The [CO2] in the xylem of tree stems is typically two to three orders of magnitude greater than atmospheric [CO2]. In this study, xylem [CO2] was experimentally manipulated in saplings of sycamore (Platanus occidentalis L.) and sweetgum (Liquidambar styraciflua L.) by allowing shoots severed from their root systems to absorb water containing [CO2] ranging from 0.04% to 14%. The effect of xylem [CO2] on CO2 efflux to the atmosphere from uninjured and mechanically injured, i.e., wounded, stems was examined. In both wounded and unwounded stems, and in both species, CO2 efflux was directly proportional to xylem [CO2], and increased 5-fold across the range of xylem [CO2] produced by the [CO2] treatment. Xylem [CO2] explained 76–77% of the variation in pre-wound efflux. After wounding, CO2 efflux increased substantially but remained directly proportional to internal stem [CO2]. These experiments substantiated our previous finding that stem CO2 efflux was directly related to internal xylem [CO2] and expanded our observations to two new species. We conclude that CO2 transported in the xylem may confound measurements of respiration based on CO2 efflux to the atmosphere. This study also provided evidence that the rapid increase in CO2 efflux observed after tissues are excised or injured is likely the result of the rapid diffusion of CO2 from the xylem, rather than an actual increase in the rate of respiration of wounded tissues.  相似文献   

3.
Soil CO2 efflux in a beech forest: comparison of two closed dynamic systems   总被引:1,自引:0,他引:1  
Le Dantec  Valérie  Epron  Daniel  Dufrêne  Eric 《Plant and Soil》1999,214(1-2):125-132
The aim of this study was to understand why two closed dynamic systems with a very similar design gave large differences in soil CO2 efflux measurements (PP systems and LI-COR). Both in the field (forest beech stand) and in the laboratory, the PPsystems gave higher estimations of soil CO2 efflux than the LI-COR system (ranging from 30% to 50%). The difference in wind speed occurring within the soil respiration chambers (0.9 m s−1 within the SRC-1 and 0.4 m s−1 within the LI-6000-09 chambers) may account for the discrepancy between the two systems. An excessive air movement inside the respiration chamber is thought to disrupt the high laminar boundary layer over the forest floor. This would promote an exhaust of the CO2 accumulated into the upper soil layers into the chamber and a lateral diffusion of CO2 in the soil towards the respiration chamber. The discrepancy between the two systems was reduced (i) by decreasing fan speed within the SRC-1, (ii) by increasing wind speed over the soil surface outside the respiration chamber, or (iii) by using an artificial soil design without high CO2 concentration in soil pores. We show that wind speed is an important component of soil CO2 diffusion which must be taken into account when measuring soil CO2 efflux, even on very fine textured soil like silt-loam soil. Proper measurement can be achieved by maintaining wind speed inside the chamber below 0.4 m s−1 since low wind speed conditions predominate under forest canopies. However, more accurate measurements will be obtained by regulating wind speeds within the chamber at a velocity representative of the wind speed recorded simultaneously at the floor surface. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
Soil respiration in a cropland is the sum of heterotrophic (mainly microorganisms) and autotrophic (root) respiration. The contribution of both these types to soil respiration needs to be understood to evaluate the effects of environmental change on soil carbon cycling and sequestration. In this paper, the effects of free-air CO2 enrichment (FACE) on hetero- and autotrophic respiration in a wheat field were differentiated and evaluated by a novel split-root growth and gas collection system. Elevated atmospheric pCO2 of approximately 200 μmol mol−1 above the ambient pCO2 significantly increased soil respiration by 15.1 and 14.8% at high nitrogen (HN) and low nitrogen (LN) application rates, respectively. The effect of elevated atmospheric pCO2 on root respiration was not consistent across the wheat growth stages. Elevated pCO2 significantly increased and decreased root respiration at the booting-heading stage (middle stage) and the late-filling stage (late stage), respectively, in HN and LN treatments; however, no significant effect was found at the jointing stage (early stage). Thus, the effect of increased pCO2 on cumulative root respiration for the entire wheat growing season was not significant. Cumulative root respiration accounted for approximately 25–30% of cumulative soil respiration in the entire wheat growing season. Consequently, cumulative microbial respiration (soil respiration minus root respiration) increased by 22.5 and 21.1% due to elevated pCO2 in HN and LN, respectively. High nitrogen application significantly increased root respiration at the late stage under both elevated pCO2 and ambient pCO2; however, no significant effects were found on cumulative soil respiration, root respiration, and microbial respiration. These findings suggest that heterotrophic respiration, which is influenced by increased substrate supplies from the plant to the soil, is the key process to determine C emission from agro-ecosystems with regard to future scenarios of enriched pCO2.  相似文献   

5.
Bouma  Tjeerd J.  Bryla  David R. 《Plant and Soil》2000,227(1-2):215-221
Estimates of root and soil respiration are becoming increasingly important in agricultural and ecological research, but there is little understanding how soil texture and water content may affect these estimates. We examined the effects of soil texture on (i) estimated rates of root and soil respiration and (ii) soil CO2 concentrations, during cycles of soil wetting and drying in the citrus rootstock, Volkamer lemon (Citrus volkameriana Tan. and Pasq.). Plants were grown in soil columns filled with three different soil mixtures varying in their sand, silt and clay content. Root and soil respiration rates, soil water content, plant water uptake and soil CO2 concentrations were measured and dynamic relationships among these variables were developed for each soil texture treatment. We found that although the different soil textures differed in their plant-soil water relations characteristics, plant growth was only slightly affected. Root and soil respiration rates were similar under most soil moisture conditions for soils varying widely in percentages of sand, silt and clay. Only following irrigation did CO2 efflux from the soil surface vary among soils. That is, efflux of CO2 from the soil surface was much more restricted after watering (therefore rendering any respiration measurements inaccurate) in finer textured soils than in sandy soils because of reduced porosity in the finer textured soils. Accordingly, CO2 reached and maintained the highest concentrations in finer textured soils (> 40 mmol CO2 mol−1). This study revealed that changes in soil moisture can affect interpretations of root and soil measurements based on CO2 efflux, particularly in fine textured soils. The implications of the present findings for field soil CO2 flux measurements are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
Photosynthesis controls of CO2 efflux from maize rhizosphere   总被引:4,自引:0,他引:4  
The effects of different shading periods of maize plants on rhizosphere respiration and soil organic matter decomposition were investigated by using a 13C natural abundance and 14C pulse labeling simultaneously. 13C was a tracer for total C assimilated by maize during the whole growth period, and 14C was a tracer for recently assimilated C. CO2 efflux from bare soil was 4 times less than the total CO2 efflux from planted soil under normal lighting. Comparing to the normal lighting control (12/12 h day/night), eight days with reduced photosynthesis (12/36 h day/night period) and strongly reduced photosynthesis (12/84 h day/night period) resulted in 39% and 68% decrease of the total CO2 efflux from soil, respectively. The analysis of 13C natural abundance showed that root-derived CO2 efflux accounted for 82%, 68% and 56% of total CO2 efflux from the planted soil with normal, prolonged and strongly prolonged night periods, respectively. Clear diurnal dynamics of the total CO2 efflux from soil with normal day-night period as well as its strong reduction by prolonged night period indicated tight coupling with plant photosynthetic activity. The light-on events after prolonged dark periods led to increases of root-derived and therefore of total CO2 efflux from soil. Any factor affecting photosynthesis, or substrate supply to roots and rhizosphere microorganisms, is an important determinant of root-derived CO2 efflux, and thereby, total CO2 efflux from soils. 14C labeling of plants before the first light treatment did not show any significant differences in the 14CO2 respired in the rhizosphere between different dark periods because the assimilate level in the plants was high. Second labeling, conducted after prolonged night phases, showed higher contribution of recently assimilated C (14C) to the root-derived CO2 efflux by shaded plants. Results from 13C natural abundance showed that the cultivation of maize on Chromic Luvisol decreased soil organic matter (SOM) mineralization compared to unplanted soil (negative priming effect). A more important finding is the observed tight coupling of the negative rhizosphere effect on SOM decomposition with photosynthesis.  相似文献   

7.
Forest soil respiration is the sum of heterotrophic (microbes, soil fauna) and autotrophic (root) respiration. The contribution of each group needs to be understood to evaluate implications of environmental change on soil carbon cycling and sequestration. Three primary methods have been used to distinguish hetero- versus autotrophic soil respiration including: integration of components contributing to in situ forest soil CO2 efflux (i.e., litter, roots, soil), comparison of soils with and without root exclusion, and application of stable or radioactive isotope methods. Each approach has advantages and disadvantages, but isotope based methods provide quantitative answers with the least amount of disturbance to the soil and roots. Published data from all methods indicate that root/rhizosphere respiration can account for as little as 10 percent to greater than 90 percent of total in situ soil respiration depending on vegetation type and season of the year. Studies which have integrated percent root contribution to total soil respiration throughout an entire year or growing season show mean values of 45.8 and 60.4 percent for forest and nonforest vegetation, respectively. Such average annual values must be extrapolated with caution, however, because the root contribution to total soil respiration is commonly higher during the growing season and lower during the dormant periods of the year.  相似文献   

8.
A novel technique designed for component monitoring of CO2 exchange in plants is described. The system is based on application of self-clamping leaf chambers connected to an open gas-exchange measuring system and on automatic recording of CO2 concentration. This technique was implemented in a commercially available instrument, PTM-48A Photosynthesis Monitor, which provides for long-term measurements of gas exchange and for discrimination of its separate components. Furthermore, many other plant functions can be monitored during plant growth and development under laboratory, greenhouse, and field conditions.  相似文献   

9.
CO2 and plants: revisited   总被引:1,自引:0,他引:1  
Dahlman  Roger C. 《Plant Ecology》1993,(1):339-355
The decade-long USA research program on the direct effects of CO2 enrichment on vegetation has achieved important milestones and has produced a number of interesting and exciting findings. Research beginning in 1980 focused on field experiments to determine whether phenomena observed in the laboratory indeed occurred in natural environments. The answer is yes. Data obtained from numerous field studies show mixed response of crop and native species to CO2 enrichment however. Nearly all experiments demonstrate that plants exhibit positive gain when grown at elevated CO2; although the magnitude varies greatly. Most crop responses range from 30 to 50 % increase in yield. Results from long-term experiments with woody species and ecosystems are even more variable. Huge growth responses (100 to nearly 300 % increase relative to controls) are reported from several tree experiments and the salt-marsh ecosystem experiment. Other results from experiments with woody species and the tundra ecosystem suggest little no effect of CO2 on physiology, growth or productivity. Numerous studies of the physiology of the CO2 effect are continuing in attempts to understand controlling mechanisms and to explain the variable growth responses. Particular emphasis needs to be given to physiological measures of interactions involving the CO2 effect and other environmental influences, and to the wide-ranging observations of photosynthesis acclimation to CO2. Prospects for future research are identified.  相似文献   

10.
Liu  Xiaozhong  Wan  Shiqiang  Su  Bo  Hui  Dafeng  Luo  Yiqi 《Plant and Soil》2002,240(2):213-223
Although CO2 efflux plays a critical role in carbon exchange between the biosphere and atmosphere, our understanding of its regulation by soil moisture is rather limited. This study was designed to examine the relationship between soil CO2 efflux and soil moisture in a natural ecosystem by taking advantage of the historically long drought period from 29 July to 21 September 2000 in the southern Central Great Plain, USA. At the end of August when soil moisture content at the top 50 mm was reduced to less than 50 g kg–1 gravimetrically, we applied 8 levels of water treatments (simulated to rainfall of 0, 10, 25, 50, 100, 150, 200, and 300 mm) with three replicates to 24 plots in a Tallgrass Prairie ecosystem in Central Oklahoma, USA. In order to quantify root-free soil CO2 efflux, we applied the same 8 levels of water treatments to 24 500-mm soil columns using soil from field adjacent to the experimental plots. We characterized dynamic patterns of soil moisture and soil CO2 efflux over the experimental period of 21 days. Both soil moisture content and CO2 efflux showed dramatic increases immediately after the water addition, followed by a gradual decline. The time courses in response to water treatments are well described by Y=Y0+ate–bt, where Y is either soil moisture or CO2 efflux, t is time, Y 0, a, and b are coefficients. Among the 8 water treatments, the maximal soil CO2 efflux rate occurred at the 50 mm water level in the field and 100 mm in the root-free soil 1 day after the treatment. The maximal soil CO2 efflux gradually shifted to higher water levels as the experiment continued. We found the relationship between soil CO2 efflux and soil moisture using the data from the 21-day experiment was highly scattered, suggesting complex mechanisms determining soil CO2 efflux by soil moisture.  相似文献   

11.
Carbon exchange rates (CER) and whole-plant carbon balances of beech (Fagus grandifolia) and sugar maple (Acer saccharum) were compared for seedlings grown under low irradiance to determine the effects of atmospheric CO2 enrichment on shade-tolerant seedlings of co-dominant species. Under contemporary atmospheric CO2, photosynthetic rate per unit mass of beech was lower than for sugar maple, and atmospheric CO2 enrich ment enhanced photosynthesis for beech only. Aboveground respiration per unit mass decreased with CO2 enrichment for both species while root respiration per unitmass decreased for sugar maple only. Under contemporary atmoapheric CO2, beech had lower C uptake per plant than sugar maple, while C losses per plant to nocturnal aboveground and root respiration were similar for both species. Under elevated CO2, C uptake per plant was similar for both species, indicating a significant relative increase in whole-seedling CER with CO2 enrich ment for beech but not for sugar maple. Total C loss per plant to aboveground respiration was decreased for beech only because increase in sugar maple leaf mass counterbalanced a reduction in respiration rates. Carbon loss to root respiration per plant was not changed by CO2 enrichment for either species. However, changes in maintenance respiration cost and nitrogen level suggest changes in tissue composition with elevated CO2. Beech had a greater net daily C gain with CO2 enrichment than did sugar maple in contrast to a lower one under contemporary CO2. Elevated CO2 preferentially enhances the net C balance of beech by increasing photosynthesis and reducing respiration cost. In all cases, the greatest C lost was by roots, indicating the importance of belowground biomass in net C gain. Relative growth rate estimated from biomass accumulation was not affected by CO2 enrichment for either species possibly because of slow growth under low light. This study indicates the importance of direct effects of CO2 enrichment when predicting potential change in species distribution with global climate change.  相似文献   

12.
杉木人工林不同深度土壤CO2通量   总被引:3,自引:0,他引:3  
王超  黄群斌  杨智杰  黄蓉  陈光水 《生态学报》2011,31(19):5711-5719
土壤CO2通量具有明显的时间和空间变异性。土壤温度和含水量是影响土壤CO2通量的重要因素,同时,不同深度的土壤CO2通量对温度和含水量变化的响应差异较大,因此,研究土壤CO2通量和影响因素随土壤深度的变化,对于准确评估土壤碳排放具有重要意义。选择福建三明杉木人工林(Cunninghamia lanceolata)作为研究对象,利用非散射红外CO2浓度探头和Li-8100开路式土壤碳通量系统,并使用Fick扩散法计算了0-60cm深度土壤CO2的通量,结果表明:(1)5种扩散模型计算的表层(5cm)CO2通量与Li-8100测量结果均具有显著相关性(P<0.01),Moldrup气体扩散模型计算结果较好。(2)土壤CO2浓度随深度的增加而升高,但60cm深度以下土壤CO2浓度开始降低;不同深度土壤CO2浓度的日变化均呈现单峰型;0-60cm土壤CO2通量日通量均值变化范围为0.54-2.17μmol m-2 s-1;(3)指数拟合分析显示,5、10cm和60cm深度处土壤CO2通量与温度具有显著相关性,Q10值分别为1.35、2.01和4.95。不同深度土壤含水量与CO2通量的相关性不显著。  相似文献   

13.
Many forest soils in the Mediterranean basin areshallow and contain high amounts of gravel in theorganic layers. Recent studies on soil organic matteraccumulation have shown high amounts of organic matteroccurring mainly in soils with high levels ofstoniness at the soil surface. The gravel layer mayaffect the microclimatic conditions of the soilsurface and probably the distribution and activity ofsoil fauna.In order to quantify the combined effects soil fauna(epigeic macrofauna and earthworms) and stoniness onthe release of soil CO2, we performed a threefactor field experiment by using a series ofreconstructed soil profiles. Factors 1 and 2 consistedof the exclusion/presence of soil epigeic macrofaunaand earthworms, and factor 3 of the presence/absenceof a gravel layer intermingled with the H horizon. Weincubated 14C straw in the H horizon and carriedout three 40 mm rainfall simulations.Soil respiration primarily depended on the season. Theeffects of soil fauna were generally small and did notcoincide with periods of high faunal activity. Thelargest effects of both earthworms and soil epigeicfauna were found after wetting the soil in summer. Theeffects of the earthworms were concentrated in themineral soil while the effects of the epigeic faunawere concentrated in the H horizon and mainly arosetowards the end of the experiment. This suggests thatthe effects of epigeic fauna may have beenunderestimated due to the length of the experiment.The gravel layer increased the effect of faunaprobably by creating more favorable microclimaticconditions. The accumulation of organic matter insoils with high levels of stoniness cannot beexplained by the effect of gravel on soil microclimatenor by its effect on the activity of soil fauna.  相似文献   

14.
Our objectives were to quantify and compare soil CO2 efflux of two dominant soil types in an old-growth neotropical rain forest in the Atlantic zone of Costa Rica, and to evaluate the control of environmental factors on CO2 release. We measured soil CO2 efflux from eight permanent soil chambers on six Oxisol sites. Three sites were developed on old river terraces (old alluvium) and the other three were developed on old lava flows (residual). At the same time we measured soil CO2 concentrations, soil water content and soil temperature at various depths in 6 soil shafts (3 m deep). Between old alluvium sites, the two-year average CO2 flux rates ranged from 117.3 to 128.9 mg C m–2 h–1. Significantly higher soil CO2 flux occurred on the residual sites (141.1 to 184.2 mg C m–2 h–1). Spatial differences in CO2 efflux were related to fine root biomass, soil carbon and phosphorus concentration but also to soil water content. Spatial variability in CO2 storage was high and the amount of CO2 stored in the upper and lower soil profile was different between old alluvial and residual sites. The major factor identified for explaining temporal variations in soil CO2 efflux was soil water content. During periods of high soil water content CO2 emission decreased, probably due to lower diffusion and CO2 production rates. During the 2-year study period inter-annual variation in soil CO2 efflux was not detected.  相似文献   

15.
To assess the long-term effect of increased CO2 and temperature on plants possessing the C3 photosynthetic pathway, Chenopodium album plants were grown at one of three treatment conditions: (1) 23 °C mean day temperature and a mean ambient partial pressure of CO2 equal to 350 bar; (2) 34 °C and 350 bar CO2; and (3) 34 °C and 750 bar CO2. No effect of the growth treatments was observed on the CO2 reponse of photosynthesis, the temperature response of photosynthesis, the content of Ribulose-1,5-bisphosphate carboxylase (Rubisco), or the activity of whole chain electron transport when measurements were made under identical conditions. This indicated a lack of photosynthetic acclimation in C. album to the range of temperature and CO2 used in the growth treatments. Plants from every treatment exhibited similar interactions between temperature and CO2 on photosynthetic activity. At low CO2 (< 300 bar), an increase in temperature from 25 to 35 °C was inhibitory for photosynthesis, while at elevated CO2 (> 400 bar), the same increase in temperature enhanced photosynthesis by up to 40%. In turn, the stimulation of photosynthesis by CO2 enrichment increased as temperature increased. Rubisco capacity was the primary limitation on photosynthetic activity at low CO2 (195 bar). As a consequence, the temperature response of A was relatively flat, reflecting a low temperature response of Rubisco at CO2 levels below its km for CO2. At elevated CO2 (750 bar), the temperature response of electron transport appeared to control the temperature dependency of photosynthesis above 18 °C. These results indicate that increasing CO2 and temperature could substantially enhance the carbon gain potential in tropical and subtropical habitats, unless feedbacks at the whole plant or ecosystem level limit the long-term response of photosynthesis to an increase in CO2 and temperature.Abbreviations A net CO2 assimilation rate - C a ambient partial pressure of CO2 - C i intercellular partial pressure of CO2 - Rubisco Ribulose-1,5-bisphosphate carboxylase - VPD vapor pressure difference between leaf and air  相似文献   

16.
Recent, parallel developments in the study of freshwater and marine ecosystems have provided evidence that net heterotrophic systems (those in which respiratory organic matter destruction exeeds photosynthetic production) are more prevalent than hitherto believed, including most rivers, oligo- to mesotrophic lakes and some oligotrophic regions of the ocean. In parallel, these aquatic ecosystems have been shown to act as CO2 sources to the atmosphere, as expected from the heterotrophic nature of the communities they contain. The prevalence of net heterotrophic aquatic ecosystems indicates that they must receive significant inputs of organic carbon from adjacent ecosystems, assigning an important role to the lateral exchanges of carbon between land and aquatic ecosystems, between coastal and open ocean ecosystems, as well as internal redistribution within large or complex aquatic ecosystems in determining their metabolic status and the gaseous exchange with the atmosphere. The examination of the carbon budget of ecosystems requires, therefore, an integrative approach that accounts for exchanges between compartments often studied in isolation. These recent findings conform a new paradigm of the functioning of aquatic ecosystems, and the metabolic connectivity between ecosystems in the biosphere.  相似文献   

17.
The role of land plants in establishing our present day atmosphere is analysed. Before the evolution of land plants, photosynthesis by marine and fresh water organisms was not intensive enough to deplete CO2 from the atmosphere, the concentration of which was more than the order of magnitude higher than present. With the appearance of land plants, the exudation of organic acids by roots, following respiratory and photorespiratory metabolism, led to phosphate weathering from rocks thus increasing aquatic productivity. Weathering also replaced silicates by carbonates, thus decreasing the atmospheric CO2 concentration. As a result of both intensive photosynthesis and weathering, CO2 was depleted from the atmosphere down to low values approaching the compensation point of land plants. During the same time period, the atmospheric O2 concentration increased to maximum levels about 300 million years ago (Permo-Carboniferous boundary), establishing an O2/CO2 ratio above 1000. At this point, land plant productivity and weathering strongly decreased, exerting negative feedback on aquatic productivity. Increased CO2 concentrations were triggered by asteroid impacts and volcanic activity and in the Mesozoic era could be related to the gymnosperm flora with lower metabolic and weathering rates. A high O2/CO2 ratio is metabolically linked to the formation of citrate and oxalate, the main factors causing weathering, and to the production of reactive oxygen species, which triggered mutations and stimulated the evolution of land plants. The development of angiosperms resulted in a decrease in CO2 concentration during the Cenozoic era, which finally led to the glacial-interglacial oscillations in the Pleistocene epoch. Photorespiration, the rate of which is directly related to the O2/CO2 ratio, due to the dual function of Rubisco, may be an important mechanism in maintaining the limits of O2 and CO2 concentrations by restricting land plant productivity and weathering.  相似文献   

18.
Sands  Roger  Nugroho  Putranto B.  Leung  David W.M.  Sun  Osbert J.  Clinton  Peter W. 《Plant and Soil》2000,225(1-2):213-225
This study examined the reciprocal effects of growing ryegrass, lotus and other weed species in competition with radiata pine on soil CO2 and O2 concentrations and on the growth and root respiration of the radiata pine. Soil O2 concentrations decreased and soil CO2 concentrations increased with increasing soil depth. Radiata pine plus competing species slightly reduced soil O2 concentrations and markedly increased soil CO2 concentrations (up to 40 mmol mol−1) compared with radiata pine alone. The dry weights of shoots and roots, and the root respiration rates of radiata pine grown with competing vegetation were much less than those for radiata pine alone. This probably was not solely caused by competition for nutrients water or light since adequate water and nutrients were supplied to all treatments and the radiata pine overtopped the competing vegetation. When radiata pine roots were raised in NaHCO3 solutions equivalent to a range of CO2 concentrations, succinate dehydrogenase activity (a metabolic indicator of mitochondrial respiration) and elongation rates of roots decreased as CO2 concentrations increased from 0 to 40 mmol mol−1. This suggests that the elevated CO2 concentrations found in the experiments in soil was the cause, at least in part, of the reduced growth of radiata pine in competition with other species. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
We previously used dual stable isotope techniques to partition soil CO2 efflux into three source components (rhizosphere respiration, litter decomposition, and soil organic matter (SOM) oxidation) using experimental chambers planted with Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] seedlings. The components responded differently to elevated CO2 (ambient + 200 mol mol–1) and elevated temperature (ambient + 4 °C) treatments during the first year. Rhizosphere respiration increased most under elevated CO2, and SOM oxidation increased most under elevated temperature. However, many studies show that plants and soil processes can respond to altered climates in a transient way. Herein, we extend our analysis to 2 years to evaluate the stability of the responses of the source components. Total soil CO2 efflux increased significantly under elevated CO2 and elevated temperature in both years (1994 and 1995), but the enhancement was much less in 1995. Rhizosphere respiration increased less under elevated temperature in 1995 compared with 1994. Litter decomposition also tended to increase comparatively less in 1995 under elevated CO2, but was unresponsive to elevated temperature between years. In contrast, SOM oxidation was similar under elevated CO2 in the 2 years. Less SOM oxidation occurred under elevated temperature in 1995 compared with 1994. Our results indicate that temporal variations can occur in CO2 production by the sources. The variations likely involve responses to antecedent physical disruption of the soil and physiological processes.  相似文献   

20.
Biological soil crusts (BSCs) are an important source of organic carbon, and affect a range of ecosystem functions in arid and semiarid environments. Yet the impact of grazing disturbance on crust properties and soil CO2 efflux remain poorly studied, particularly in African ecosystems. The effects of burial under wind-blown sand, disaggregation and removal of BSCs on seasonal variations in soil CO2 efflux, soil organic carbon, chlorophyll a and scytonemin were investigated at two sites in the Kalahari of southern Botswana. Field experiments were employed to isolate CO2 efflux originating from BSCs in order to estimate the C exchange within the crust. Organic carbon was not evenly distributed through the soil profile but concentrated in the BSC. Soil CO2 efflux was higher in Kalahari Sand than in calcrete soils, but rates varied significantly with seasonal changes in moisture and temperature. BSCs at both sites were a small net sink of C to the soil. Soil CO2 efflux was significantly higher in sand soils where the BSC was removed, and on calcrete where the BSC was buried under sand. The BSC removal and burial under sand also significantly reduced chlorophyll a, organic carbon and scytonemin. Disaggregation of the soil crust, however, led to increases in chlorophyll a and organic carbon. The data confirm the importance of BSCs for C cycling in drylands and indicate intensive grazing, which destroys BSCs through trampling and burial, will adversely affect C sequestration and storage. Managed grazing, where soil surfaces are only lightly disturbed, would help maintain a positive carbon balance in African drylands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号