首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The genus Yersinia includes 11 species, 3 of which (Y. pestis, Y. pseudotuberculosis, and Y. enterocolitica) are pathogenic for humans. The remaining 8 species (Y. frederiksenii, Y. intermedia, Y. kristensenii, Y. bercovieri, Y. mollaretii, Y. rohdei, Y. ruckeri, and Y. aldovae) are merely opportunistic pathogens found mostly in the environment. In this work, the genomic differences among Yersinia were determined using a Y. pestis-specific DNA microarray. The results revealed 292 chromosomal genes that were shared by all Yersinia species tested, constituting the conserved gene pool of the genus Yersinia. Hierarchical clustering analysis of the microarray data revealed the genetic relationships among all 11 species in this genus. The microarray analysis in conjunction with PCR screening greatly reduced the number of chromosomal genes (32) specific for Y. pestis to 16 genes and uncovered a high level of genomic plasticity within Y. pseudotuberculosis, indicating that its different serotypes have undergone an extensively parallel loss or acquisition of genetic content, which is likely to be important for its adaptation to changes in environmental niches.  相似文献   

2.
Wang X  Zhou D  Qin L  Dai E  Zhang J  Han Y  Guo Z  Song Y  Du Z  Wang J  Wang J  Yang R 《Archives of microbiology》2006,186(2):151-159
In order to further figure out the genetic differences between Yersinia pestis and Yersinia pseudotuberculosis, and to provide novel insights into the evolution of Y. pestis, we compared the genomes of Y. pseudotuberculosis serogroup I strain ATCC29833 and Y. pestis Antiqua strain 49006 using a combination of suppression subtractive hybridization (SSH) and comparative genomic hybridization with DNAs from a diverse panel of Y. pestis and Y. pseudotuberculosis strains. SSH followed by BLAST analysis revealed 112 SSH fragments specific to strain ATCC29833, compared to the genomic sequence data of Y. pestis strains CO92, KIM and 91001. We identified 17 SSH fragments that appeared to be newly determined genetic contents of Y. pseudotuberculosis. The combination of SSH and microarray analysis showed that the parallel loss of genes contributed greatly not only to the significant genomic divergence between Y. pestis and Y. pseudotuberculosis but also to the intra-species microevolution of both of species. The results confirmed our earlier hypothesis that Y. pestis Antiqua isolates from the natural plague focus B in China represented the most ancestral strains in China, hence phylogenetically the closest isolates to Y. pseudotuberculosis.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .Xiaoyi Wang and Dongsheng Zhou contributed equally to this work.  相似文献   

3.
Zhou D  Han Y  Song Y  Tong Z  Wang J  Guo Z  Pei D  Pang X  Zhai J  Li M  Cui B  Qi Z  Jin L  Dai R  Du Z  Bao J  Zhang X  Yu J  Wang J  Huang P  Yang R 《Journal of bacteriology》2004,186(15):5138-5146
Genomics research provides an unprecedented opportunity for us to probe into the pathogenicity and evolution of the world's most deadly pathogenic bacterium, Yersinia pestis, in minute detail. In our present work, extensive microarray analysis in conjunction with PCR validation revealed that there are considerable genome dynamics, due to gene acquisition and loss, in natural populations of Y. pestis. We established a genomotyping system to group homologous isolates of Y. pestis, based on profiling or gene acquisition and loss in their genomes, and then drew an outline of parallel microevolution of the Y. pestis genome. The acquisition of a number of genomic islands and plasmids most likely induced Y. pestis to evolve rapidly from Yersinia pseudotuberculosis to a new, deadly pathogen. Horizontal gene acquisition also plays a key role in the dramatic evolutionary segregation of Y. pestis lineages (biovars and genomovars). In contrast to selective genome expansion by gene acquisition, genome reduction occurs in Y. pestis through the loss of DNA regions. We also theorized about the links between niche adaptation and genome microevolution. The transmission, colonization, and expansion of Y. pestis in the natural foci of endemic plague are parallel and directional and involve gradual adaptation to the complex of interactions between the environment, the hosts, and the pathogen itself. These adaptations are based on the natural selections against the accumulation of genetic changes within genome. Our data strongly support that the modern plague originated from Yunnan Province in China, due to the arising of biovar orientalis from biovar antiqua rather than mediaevalis.  相似文献   

4.
The detection of Y. pestis cells in magnetic enzyme immunoassay is carried out with the use of magnetic polyacrylamide microgranules. In the assay system for the determination of the antigen commercial Y. pestis antigens, peroxidase-labeled antibodies, the substrate mixture consisting of sodium salt of 2,2-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid and H2O2 in citrate-phosphate buffer solution, pH 4.5, are used. The sensitivity of the method is 5 X 10(4) microbial bodies per ml.  相似文献   

5.
Chromosomal DNA from reference Yersinia strains was digested individually with 9 restriction endonucleases. DNA fragments were separated and analyzed by electrophoresis through agarose gels. The clearest fragment patterns were obtained when EcoRI was employed. The Y. pestis fragment pattern obtained after the use of this enzyme showed the presence of a unique DNA fragment with molecular mass 1400 bp. This DNA fragment was cloned, purified, labeled with 32P and then used to probe EcoRI digests of all three Yersinia species. A strong hybridization signal was obtained with Y. pestis strain. No such signal was found with Y. pseudotuberculosis or Y. enterocolitica. These results indicate that the DNA fragment is species specific and could be used as a diagnostic DNA probe for Y. pestis.  相似文献   

6.
Dong XQ  Lindler LE  Chu MC 《Plasmid》2000,43(2):144-148
A 6-kb cryptic plasmid (pYC; 5919 bp) has been recovered from Yersinia pestis isolates originating from regions of Yunnan province in China. The sequence of pYC was determined, and analysis of the sequence has revealed that two of the plasmid DNA regions (ORFs 10 and 11) are similar to the DinJ1 and DinJ2 gene products encoded by Escherichia coli chromosomal DNA. This plasmid is increasingly harbored by Y. pestis isolates recovered from a domestic rodent cycle in the southern regions of the province. Further studies will determine the origin and function of pYC.  相似文献   

7.
The genetic analysis of Y. pestis virulence factors accomplished in the 358 strain isogenic system allowed us to determine a minimal set of known factors providing pathogenicity. The combination of chromosomal marker Pgm+ and calcium dependence plasmid (pCad) is shown to be sufficient for preserving the virulence of Y. pestis. Experimental modelling of virulence in this microorganism by the genetic exchange methods was carried out. The reduced virulence of the strains Pgm+ and pCad+ for guinea pigs was detected.  相似文献   

8.
9.

Background  

Yersinia pestis, the aetiological agent of plague, has been well defined genotypically on local and worldwide scales. In November 2005, five cases of severe pneumonia of unknown causes, resulting in two deaths, were reported in Yulong, Yunnan province. In this study, we compared Y. pestis isolated from the Yulong focus to strains from other areas.  相似文献   

10.
11.
In order to construct a DNA probe for the plague pathogen detection, we have obtained the recombinant plasmid pRD100 carrying an EcoRI-flanked 140 bp fragment from the genetically silent region of Yersinia pestis species-specific plasmid pYP1. When used as a DNA probe for hybridization of DNA from various strains of 25 bacterial species, this DNA fragment was shown to have the complementary sequences in all investigated Yersinia pestis strains (200), including the plasmid pYP1 lacking ones, and in all the studied Yersinia pseudotuberculosis serotype I strains (80). The search for the probe target in these species has led us to conclusion that it is a specific repeated DNA sequence present in more copies in Yersinia pestis than in Yersinia pseudotuberculosis serotype I. The hybridization of these sequences with the radioactive probe and 24 hours autography makes possible the detection of 1.3 x 10(5) cells of Yersinia pestis and 3 x 10(6) cells of Yersinia pseudotuberculosis serotype I immobilized on the nitrocellulose membranes. Use of the probe for analysis of the nitrocellulose membrane fixed spleen smears from animals that died of experimental plague made possible the detection of Yersinia pestis cells within 48 h.  相似文献   

12.
Y. pestis cells cultivated at 37 degrees C are capable of agglutinating red blood cells of some animals, which is due to the appearance of pili. The adhesion pili consist of protein subunits with a molecular weight of the order of 12000 daltons, their isoionic point being at pH 4.7. The reaction of hemagglutination was inhibited by the mixture of ganglyosides, while the preliminary treatment of red blood cells with neuraminidases increased its effectiveness. The pili are supposed to take part in the expression of virulence.  相似文献   

13.

Background

Whole genome sequencing allowed the development of a number of high resolution sequence based typing tools for Yersinia (Y.) pestis. The application of these methods on isolates from most known foci worldwide and in particular from China and the Former Soviet Union has dramatically improved our understanding of the population structure of this species. In the current view, Y. pestis including the non or moderate human pathogen Y. pestis subspecies microtus emerged from Yersinia pseudotuberculosis about 2,600 to 28,600 years ago in central Asia. The majority of central Asia natural foci have been investigated. However these investigations included only few strains from Mongolia.

Methodology/Principal Findings

Clustered Regularly Interspaced Short Prokaryotic Repeats (CRISPR) analysis and Multiple-locus variable number of tandem repeats (VNTR) analysis (MLVA) with 25 loci was performed on 100 Y. pestis strains, isolated from 37 sampling areas in Mongolia. The resulting data were compared with previously published data from more than 500 plague strains, 130 of which had also been previously genotyped by single nucleotide polymorphism (SNP) analysis. The comparison revealed six main clusters including the three microtus biovars Ulegeica, Altaica, and Xilingolensis. The largest cluster comprises 78 isolates, with unique and new genotypes seen so far in Mongolia only. Typing of selected isolates by key SNPs was used to robustly assign the corresponding clusters to previously defined SNP branches.

Conclusions/Significance

We show that Mongolia hosts the most recent microtus clade (Ulegeica). Interestingly no representatives of the ancestral Y. pestis subspecies pestis nodes previously identified in North-western China were identified in this study. This observation suggests that the subsequent evolution steps within Y. pestis pestis did not occur in Mongolia. Rather, Mongolia was most likely re-colonized by more recent clades coming back from China contemporary of the black death pandemic, or more recently in the past 600 years.  相似文献   

14.
Literature data and results of our experimental studies on genetic base of biochemical differentiation of Yersinia pestis strains of various subspecies and biovars are summarized in the review. Data on variability of genes coding biochemical features (sugar and alcohol fermentation, nitrate reduction), the differential development of which are the base of existing phenotypic schemes of Y. pestis strains classification, are presented. Variability of these genes was shown to have possible use for the development of genetic classification of Y. pestis strains of various subspecies and biovars.  相似文献   

15.
LcrV, a multifunctional protein, acts as a positive regulator of effector protein secretion for the type III secretion system (T3SS) in Yersinia pestis by interaction with the negative regulator LcrG. In this study, LcrV was analyzed to identify regions required for LcrG interaction. Random-linker insertion mutagenesis, deletion analysis, and site-directed mutagenesis of hydrophobic amino acids between residues 290 and 311 allowed the isolation of an LcrV mutant (LcrV L291R F308R) defective for LcrG interaction. The new residues identified in LcrG interaction lie in helix 12 of LcrV; residues in helix 7 of LcrV are known to be involved in LcrG interaction. Helix 7 and helix 12 of LcrV interact to form an intramolecular coiled coil; these new results suggest that the intramolecular coiled coil in LcrV is required for LcrG interaction and activation of the T3SS.  相似文献   

16.
Yersinia pestis is a bacterium that is transmitted between fleas, which have a body temperature of 26 °C, and mammalian hosts, which have a body temperature of 37 °C. To adapt to the temperature shift, phenotype variations, including virulence, occur. In this study, an antigen microarray including 218 proteins of Y. pestis was used to evaluate antibody responses in a pooled plague serum that was unadsorbed, adsorbed by Y. pestis cultivated at 26 °C, or adsorbed by Y. pestis cultivated at 26 and 37 °C to identify protein expression changes during the temperature shift. We identified 12 proteins as being expressed at 37 °C but not at 26 °C, or expressed at significantly higher levels at 37 °C than at 26 °C. The antibodies against 7 proteins in the serum adsorbed by Y. pestis cultivated at 26 and 37 °C remained positive, suggesting that they were not expressed on the surface of Y. pestis in LB broth in vitro or specifically expressed in vivo. This study proved that protein microarray and antibody profiling comprise a promising technique for monitoring gene expression at the protein level and for better understanding pathogenicity, to find new vaccine targets against plague.  相似文献   

17.
Y. pestis L-forms and bacterial forms persist in the body of great gerbils for 40 days. L-forms are poorly phagocytized and can persist in phagocytes for a long time. In guinea pigs immunized with vaccine EV, Y. pestis antigen could be detected till day 160. An unstable L-form was isolated from Ornithodoros mites 3 years after their experimental infection with Y. pestis. Bacterial forms persist in mites for 1-3 years. For 5 years Y. pestis antigen is regularly detected in a high percentage of mites.  相似文献   

18.
A 44-megadalton plasmid associated with virulence and Ca2+ dependence from Yersinia enterocolitica 8081 was compared at the molecular level with a 47-megadalton plasmid associated with Ca2+ dependence from Yersinia pestis EV76. The plasmids were found to share 55% deoxyribonucleic acid sequence homology distributed over approximately 80% of the plasmid genomes. One region in which the plasmids differed was found to contain sequences concerned with essential plasmid functions. Forty-five mutants of Y. pestis were isolated which had spontaneously acquired the ability to grow on calcium-free medium (Ca2+ independence). Of these mutants, 21 were cured of their 47-megadalton plasmid, whereas the remaining had either suffered a major deletion of the plasmid or had a 2.2-kilobase insertion located in one of two adjacent BamHI restriction fragments encompassing approximately 9 kilobases. The inserted sequence was found at numerous sites on the Y. pestis chromosome and on all three plasmids in the strain and may represent a Y. pestis insertion sequence element.  相似文献   

19.
20.
Yersinia pestis TJW, an avirulent wild-type strain, requires phenylalanine and methionine for growth. It was of interest to examine and define the methionine transport system because of this requirement. The methionine system showed saturation kinetics with a Km for transport of approximately 9 times 10(-7) M. After 8 s of methionine transport, essentially all of the methionine label appeared in S-adenosyl-L-methionine (SAM) as detected in ethanol extracts. Small amounts of free methionine was detected intracellularly after 1 min of transport. Addition of glucose increased significantly the amount of intracellular methionine at 1 min. A series of SAM metabolic products was detected after 90 s to 5 min of transport including: 5'-thiomethyladenosine, homoserine lactone, S-adenosyl homoserine, and a fluorescent methyl receptor compound. Results from assays for SAM synthetase in spheroplast fractions showed a small (16%) but significant portion of synthetase associated with the membrane. However, most of the enzyme activity was associated with the cytoplasmic fraction. Methionine transport was characterized by a high degree of stereospecificity. No competition occurred from structurally unrelated amino acids. Although uptake was inhibited by uncoupling and sulfhydryl reagents, no efflux was observed. Results using energy inhibitors on unstarved and starved cells showed that respiratory inhibitors such as potassium cyanide (KCN) and amytal were most effective, and that arsenate was least effective. KCN plus arsenate completely blocked utilization of energy derived from glucose, and KCN completely blocked utilization of energy deived from D-lactate. The data indicate that methionine transport in Y. pestis is linked to the trapping of methionine in SAM. The results further suggest that this transport system can be classified as a permease-bound system where transport is coupled to an energized membrane state and to respiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号