首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies of repair enzyme activities in a uv-sensitive cell line (V79/UC) derived from Chinese hamster V79 cells have revealed levels of total DNA polymerase that are about 50% of the levels in the parental cell line. There are a number of DNA polymerase inhibitors available which allow us to distinguish between the major forms of DNA polymerase (alpha, beta, gamma, and delta) identified in mammalian cells. Enzyme assays with these inhibitors indicate that the aphidicolin-sensitive DNA polymerase is defective in the V79/UC cell line. This could be either polymerase alpha or delta, or both. The V79/UC cells do not express resistance to aphidicolin in standard toxicity studies. However, when aphidicolin is added postirradiation in survival assays designed to measure the extent of inhibitable repair, V79/UC cells do not respond with the further decrease in survival seen in the parental line. Further evidence of a polymerase-dependent repair defect is evident from alkaline elution data. In this case the V79/UC cells show the appearance of single-strand breaks following uv irradiation in the absence of any added inhibitor. Cells of the V79/M12G parental line, on the other hand, show the appearance of single-strand breaks only when aphidicolin is present.  相似文献   

2.
3.
HeLa S3 cells growing in suspension have been used to investigate possible mechanisms underlying the inhibitory action of hyperthermia (44 degrees C) on the repair of DNA strand breaks as caused by a 6-Gy X-irradiation treatment. The role of hyperthermic inactivation of DNA polymerase alpha was investigated using the specific DNA polymerase alpha inhibitor, aphidicolin. It was found that both heat and aphidicolin (greater than or equal to 2 micrograms ml-1) could decrease DNA repair rates in a dose-dependent way. When the applications of heat and aphidicolin were combined, each at nonmaximal doses, no full additivity in effects was observed on DNA repair rates. When the heat and radiation treatment were separated in time by postheat incubation at 37 degrees C, restoration to normal repair kinetics was observed within 8 h after hyperthermia. When heat was combined with aphidicolin addition, restoration of the aphidicolin effect to control level was also observed about 8 h after hyperthermia. It is suggested that although DNA polymerase alpha seems to be involved in the repair of X-ray-induced DNA damage, and although this enzyme is partially inactivated by heat, other forms of heat damage have to be taken into account to explain the observed repair inhibition.  相似文献   

4.
Excision repair of DNA in the presence of aphidicolin   总被引:2,自引:0,他引:2  
During excision repair of UV light or dimethyl sulphate (DMS)-induced damage to DNA the patch size for actively replicating KB or T98G cells is around 20 nucleotides. When confluent T98G cells or 'quiescent' KB cells are used the patch size is around 10 nucleotides. This value can be increased to around 20 nucleotides in T98G cells if a large excess of BrdUrd is included in the repair incubation medium. With 'quiescent' KB cells the patch size is not increased by excess BrdUrd. For all of these experimental conditions, when excision repair of UV or DMS damage takes place in the presence of aphidicolin, the patch size is found to be several times that found in its absence. Given the inhibitory specificity of aphidicolin for DNA polymerase alpha these results provide additional evidence that DNA polymerase alpha plays a role in the excision repair of DNA damaged by UV light or DMS. It is postulated that aphidicolin interrupts the processivity of the DNA polymerase alpha holoenzyme and allows an exonuclease to enlarge the repair site.  相似文献   

5.
A study was made of the repair of ionizing radiation-induced DNA single-strand breaks (SSB) in proliferating and quiescent mouse Swiss 3T6 cells and in those stimulated from the quiet status by epidermal growth factor in combination with insulin, in the presence of specific inhibitors of DNA polymerase alpha and delta (aphidicolin) and DNA polymerase beta (2', 3'-dideoxythymidine-5'-triphosphate). The repair of DNA SSB induced by X-ray-irradiation (10 Gr) or by gamma-ray irradiation (150 Gr) is more sensitive to aphidicolin independently of cell proliferating status. Aphidicolin inhibits the recovery of single-strand DNA in quiescent and mitogen-stimulated cells three times stronger than in proliferating cells. The influence of 2', 3'-dideoxythymidine-5'-triphosphate on the rate of DNA SSB repair in cells of all the three types does not differ. Thus, the decrease in DNA repair efficiency in quiescent cells is connected with a decrease in the activity of aphidicolin-sensitive DNA polymerase, apparently DNA polymerase alpha. It is suggested that the regulation action of mitogens on the DNA SSB repair may be determined by qualitative changes of this enzyme or of some conditions in which it functions. The involvement of DNA polymerase delta in this process is not excluded.  相似文献   

6.
The antibiotic, aphidicolin, is a potent inhibitor of DNA polymerase alpha and consequently of de novo DNA synthesis in human cells. We report here that in gamma-irradiated normal human cells, aphidicolin (at 5 micrograms/ml and less) had no significant effect on the rate of the rejoining of DNA single strand breaks or rate of removal of DNA lesions assayed as sites sensitive to incising activities present in crude protein extracts of Micrococcus luteus cells. gamma-irradiated human ataxia telangiectasia cells are known to demonstrate enhanced cell killing and exhibit resistance to the inhibiting effects of radiation on DNA synthesis. Under conditions of minimal aphidicolin cytotoxicity but extensive inhibition of de novo DNA synthesis, the radiation responses of neither normal nor ataxia telangiectasia cells were significantly modified by aphidicolin. Firstly, we conclude that human DNA polymerase alpha is not primarily involved in the repair of the two classes of radiogenic DNA lesions examined. Secondly, the radiation hypersensitivity of ataxia telangiectasia cells cannot be explained on the basis of premature replication of damaged cellular DNA resulting from the resistance of de novo DNA synthesis to inhibition by ionizing radiation.  相似文献   

7.
The antibiotic, aphidicolin, is a potent inhibitor of DNA polymerase α and consequently of de novo DNA synthesis in human cells. We report here that in γ-irradiated normal human cells, aphidicolin (at 5 μg/ml and less) had no significant effect on the rate of the rejoining of DNA single strand breaks or rate of removal of DNA lesions assayed as sites sensitive to incising activities present in crude protein extracts of Micrococcus luteus cells. γ-irradiated human ataxia telangiectasia cells are known to demonstrate enhanced cell killing and exhibit resistance to the inhibiting effects of radiation on DNA synthesis. Under conditions of minimal aphidicolin cytotoxicity but extensive inhibition of de novo DNA synthesis, the radiation responses of neither normal nor ataxia telangiectasia cells were significantly modified by aphidicolin. Firstly, we conclude that human DNA polymerase α is not primarily involved in the repair of the two classes of radiogenic DNA lesions examined. Secondly, the radiation hypersensitivity of ataxia telangiectasia cells cannot be explained on the basis of premature replication of damaged cellular DNA resulting from the resistance of de novo DNA synthesis to inhibition by ionizing radiation.  相似文献   

8.
Common fragile sites are loci that preferentially form gaps and breaks on metaphase chromosomes when DNA synthesis is perturbed, particularly after treatment with the DNA polymerase inhibitor, aphidicolin. We and others have identified several cell cycle checkpoint and DNA repair proteins that influence common fragile site stability. However, the initial events underlying fragile site breakage remain poorly understood. We demonstrate here that aphidicolin-induced gaps and breaks at fragile sites are prevented when cells are co-treated with low concentrations of the topoisomerase I inhibitor, camptothecin. This reduction in breakage is accompanied by a reduction in aphidicolin-induced RPA foci, CHK1 and RPA2 phosphorylation, and PCNA monoubiquitination, indicative of reduced levels of single stranded DNA. Furthermore, camptothecin reduces spontaneous fragile site breakage seen in cells lacking ATR, even in the absence of aphidicolin. These data from cultured human cells demonstrate that topoisomerase I activity is required for DNA common fragile site breaks and suggest that polymerase–helicase uncoupling is a key initial event in this process.  相似文献   

9.
Mammalian cells permeabilised by treatment with saponin are capable of UV excision repair. We have developed an assay system which permits measurement of the later stages of repair, i.e. repair synthesis and ligation. Incomplete repair sites are accumulated in UV-irradiated cells by incubating them with DNA synthesis inhibitors hydroxyurea and aphidicolin. On removal of the inhibitors at the time of permeabilisation, these incomplete sites, detected as DNA breaks, are rapidly ligated in a reaction that requires deoxyribonucleoside triphosphates and is blocked by aphidicolin. Thus ligation is possible only after a significant amount of DNA synthesis. We have used the assay to clarify the mode of inhibition of DNA repair by 1-beta-D-arabinofuranosylcytosine (ara C), another DNA polymerase inhibitor. It is well known that incomplete repair sites accumulated in whole cells with ara C are ligated at a slow rate, if at all. The hypothesis that ara C blocks or reduces further polymerisation after its incorporation into repair patches is disproved by our demonstration that, in permeable cells, the accumulated DNA breaks are ligated very rapidly. The likely explanation of the action of ara C is that, once phosphorylated, it remains in the cell as ara CTP and continues to inhibit polymerisation through competition with dCTP; in permeable cells, it readily leaks out.  相似文献   

10.
Aphidicolin was shown to be a specific inhibitor of eukaryotic DNA polymerase α. We have examined the effect of aphidicolin on repair synthesis as well as replication of HeLa cell DNA, and found that it inhibits not only DNA replication but also UV-induced DNA repair in hydroxyurea-arabinosyl cytosine treated cells.  相似文献   

11.
In view of the possible utilization of aphidicolin, a specific inhibitor of DNA polymerase α, in the treatment of neoplastic diseases, it seemed important to assess the mutagenic effect of the drug and the possible modification induced by metabolic activation in the liver. This paper shows that aphidicolin lacks mutagenicity in the Ames' Salmonella-microsome test in agreement with our previous observation that it does not induce DNA repair synthesis in HeLa cells. During the studies of mutagenicity we have observed that aphidicolin is converted to inactive derivative(s) by rat liver microsomal oxidases. The reaction is dependent on time and temperature and requires NADP+ and glucose-6-P. The metabolites are not mutagenic and they do not induce DNA repair synthesis in HeLa cells. Therefore the possible anti-cancer use of aphidicolin is not hampered by its partial metabolic inactivation in liver. Our results suggest however that aphidicolin will possibly be clinically useful at concentrations higher than those expected from our studies with human DNA polymerase α in vitro and human neoplastic cell lines in vivo. The metabolic derivative(s) of aphidicolin is inactive both against cellular DNA polymerase α and Herpes simplex viral DNA polymerase.  相似文献   

12.
Excision repair of ultraviolet damage in human fibroblasts was partially inhibited by drugs that block DNA polymerases alpha or beta (cytosine arabinoside, aphidicolin and dideoxythymidine) causing a reduction in unscheduled synthesis and an accumulation of single-strand breaks. The strand breaks accumulated in the presence of aphidicolin could be resealed within 30 min after removal of the drug, but those accumulated by cytosine arabinoside took many hours. Digestion of repaired DNA with exonuclease III or S1 nuclease revealed that even the highest concentration of polymerase inhibitors, singly or in combination, that produced maximal accumulation of single-strand breaks only blocked 37-86% of repair sites. Use of single-strand break frequencies to measure the number of repair events can therefore be in error by as much as a factor of 3. The blocked patches with free 3'OH termini were, on average, 22% of normal length, corresponding to between 6 and 17 bases (assuming a normal patch of 25-75 bases in length). Patches that remained unsealed in vivo were also resistant to sealing by T4 ligase in vitro. The data are more consistent with a mechanism of repair in which long single-strand gaps are first made by excision enzymes and subsequently filled in by DNA polymerase alpha. Strand displacement or nick translation mechanisms seem unlikely.  相似文献   

13.
Aphidicolin inhibits DNA repair in human lymphocytes as measured by unscheduled DNA synthesis and the rejoining of strand breaks. When the lymphocytes are mitogen stimulated, sensitivity of DNA repair towards aphidicolin decreases, possibly due to the induction of the beta DNA polymerase.  相似文献   

14.
Effect of aphidicolin on viral and human DNA polymerases.   总被引:9,自引:0,他引:9  
DNA polymerases induced by Herpes simplex and Vaccinia viruses are inhibited by aphidicolin and this inhibition is probably the basis of its antiviral activity in vivo. Its possible clinical use is however hampered by the concomitant effect on human replicative DNA polymerase α. The inhibition of human α-polymerase is reversible both invitro and in vivo and the changes in the rate of incorporation of thymidine into DNA, following treatment with aphidicolin for a generation time, indicate the likely synchronization of the cells due to this agent. DNA polymerase β, which has recently been shown to carry out repair synthesis of damaged nuclear DNA, is not inhibited by aphidicolin either in vitro on in vivo suggesting that the drug could allow a rapid and simple evaluation of DNA repair synthesis due to DNA polymerase β.  相似文献   

15.
Exposure of human cells to ionizing radiation at the G1/S-phase border of the cell cycle leads to the production of repair patches of 3 nucleotides, representing the constitutive repair response, and very long repair patches (VLRP) of at least 150 nucleotides, representing an induced response. We examined the type of DNA damage that may signal this induced repair response using two chemicals that produce subsets of the damage induced by ionizing radiation. Treatment of cells at the G1/S-phase border with bleomycin, which produces a high proportion of DNA double-strand breaks, also leads to the production of VLRP of at least 130 nucleotides. In contrast, when cells were treated with hydrogen peroxide, which produces base modifications and single-strand breaks, no VLRP were observed. Thus it would appear that DNA double-strand breaks are the signal that leads to the induction of the VLRP. We also examined the relationship between the induced repair response and DNA replication. When cells are treated with hydroxyurea, under conditions that inhibit more than 98% of the DNA synthesis, prior to exposure to 5 Gy, repair patches of 3 and 150 nucleotides are found. This indicates that the longer repair patches are not a result of aberrant DNA replication. However, when cells are treated with the DNA polymerase inhibitor aphidicolin in combination with hydroxyurea and cytosine arabinoside, no induced long patches are found. These results indicate that DNA polymerase alpha, delta or epsilon is required for the synthesis of the VLRP.  相似文献   

16.
Inhibitors of DNA polymerase alpha such as aphidicolin (APC) or 1-beta-D-arabinofuranosyl-cytosine (araC) cause DNA-strand breaks to accumulate after UV-irradiation, at sites where repair resynthesis is inhibited. Transformed cells accumulate fewer such breaks than normal cells do; this may be due to differences in the extent, or the nature, of excision-repair synthesis in transformed and in normal cells. We have looked for differences in the nature of repair synthesis, comparing the labelling of DNA by deoxycytidine (dC) and araC through UV-induced repair in normal and transformed mouse cells. We have made parallel determinations of precursor discrimination in replicative synthesis, and find that normal cells discriminate better against araC in replicative synthesis than do transformed cells. But repair synthesis discriminates against araC less than normal replicative synthesis does, to a similar extent in both cell types. Thus, there are qualitative differences between the DNA polymerases engaged in UV excision repair and replication in normal and transformed mouse cells; but there is no evidence for a predominantly araC-insensitive repair synthesis in transformed cells, such as might account for the difference in break accumulation.  相似文献   

17.
The chromatin of human cells undergoes structural rearrangements during excision repair of ultraviolet damage in DNA that were detected by transient relaxation of DNA supercoiling and increased staphylococcal nuclease digestibility of repaired sites. Inhibition of polymerization and/or ligation of repaired regions with inhibitors of DNA polymerase alpha (cytosine arabinoside and aphidicolin) resulted in the accumulation of single-strand breaks, delayed reconstruction of DNA supercoiling, and maintenance of the staphylococcal nuclease digestibility. These observations suggest that reconstruction of the native chromatin state requires completion of repaired regions with covalent ligation into the DNA strands. Although previous claims have been made that a late stage associated with ligation of repaired regions may be defective in cells from patients with Cockayne syndrome, complete reconstruction of the native chromatin occurred in cells from three unrelated patients after ultraviolet irradiation. No abnormality in repair was therefore detected in Cockayne syndrome cells. The hypersensitivity of cell survival and semiconservative DNA replication to damage by ultraviolet light in this human disorder must therefore be regarded as features of a primary defect in DNA metabolism unrelated to DNA repair.  相似文献   

18.
19.
In confluent, stationary phase cells, an aphidicolin-sensitive DNA polymerase mediates UV-induced excision repair, but the situation in growing cells is still controversial. The sensitivity of repair synthesis to aphidicolin, an inhibitor of DNA polymerases alpha and delta, was determined in growth phase and confluent normal human fibroblasts (AG1518) using several techniques. Repair synthesis in confluent cells was always inhibited by aphidicolin, no matter which measurement technique was used. However, the inhibition of repair synthesis in growth-phase cells by aphidicolin was only detectable when techniques unaffected by changes in nucleotide metabolism were used. We conclude that UV-induced repair synthesis in growing cells is actually aphidicolin sensitive, but that this inhibition can be obscured by changes in nucleotide metabolism. Employing butylphenyl-deoxyguanosine triphosphate, a potent inhibitor of polymerase alpha and a weak inhibitor of delta, we have obtained evidence that polymerase delta is responsible for repair synthesis in growth-phase cells following UV irradiation.  相似文献   

20.
The involvement of DNA polymerases alpha, beta, and delta in DNA repair synthesis induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) was investigated in human fibroblasts (HF). The effects of anti-(DNA polymerase alpha) monoclonal antibody, (p-n-butylphenyl)deoxyguanosine triphosphate (BuPdGTP), dideoxythymidine triphosphate (ddTTP), and aphidicolin on MNNG-induced DNA repair synthesis were investigated to dissect the roles of the different DNA polymerases. A subcellular system (permeable cells), in which DNA repair synthesis and DNA replication were differentiated by CsCl gradient centrifugation of BrdUMP density-labeled DNA, was used to examine the effects of the polymerase inhibitors. Another approach investigated the effects of several of these inhibitors on MNNG-induced DNA repair synthesis in intact cells by measuring the amount of [3H]thymidine incorporated into repaired DNA as determined by autoradiography and quantitation with an automated video image analysis system. In permeable cells, MNNG-induced DNA repair synthesis was inhibited 56% by 50 micrograms of aphidicolin/mL, 6% by 10 microM BuPdGTP, 13% by anti-(DNA polymerase alpha) monoclonal antibodies, and 29% by ddTTP. In intact cells, MNNG-induced DNA repair synthesis was inhibited 57% by 50 micrograms of aphidicolin/mL and was not significantly inhibited by microinjecting anti-(DNA polymerase alpha) antibodies into HF nuclei. These results indicate that both DNA polymerases delta and beta are involved in repairing DNA damage caused by MNNG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号