首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Leaf movement kinetics in five species of Rhododendron were studied in response to leaf temperature, leaf freezing point, and leaf water deficit. There was a gradient in the degree of leaf curling among species in the following order from the greatest curling to the least curling: Rhododendron catawbiense, R. maximum, R. minus, R. macrophyllum, R. ponticum. Those species found to be tolerant of winter conditions had the most intense leaf movements (both curling and angle) while those species with minimal cold tolerance had limited or no leaf movements. Leaf curling occurred at leaf temperatures above the tissue freezing points in all species. Athough leaf angle was influenced by leaf turgor, general tissue desiccation was not the ultimate cause for thermotropic leaf curling in any species tested. Those species with the greatest leaf curling and angle movements had the highest osmotic potential, the lowest water deficit at the turgor loss point, and the lowest symplastic water fraction. These data suggest that there is a trade off in Rhododendron leaf physiology between cold tolerance (due to leaf movements) and water stress tolerance (due to turgor maintenance mechanisms).  相似文献   

2.
It is postulated that leaf thermonasty (leaf curling) in rhododendrons under sub-freezing temperatures is caused by water redistribution due to extracellular freezing. We hypothesize that aquaporins (AQPs), the transmembrane water-channels, may be involved in regulating water redistribution and thus leaf curling. Our experimental system includes two Rhododendron species with contrasting leaf curling behavior whereby it was observed in R. catawbiense but not in R. ponticum. We compared leaf movements and the expression of two AQPs, i.e. R. catawbiense/ponticum plasma-membrane intrinsic protein 2 (Rc/RpPIP2;1 and Rc/RpPIP2;2), in the two species under freezing–rewarming and dehydration–rehydration cycles. To determine the relationship between extracellular freezing and leaf-curling, we monitored leaf-curling in R. catawbiense with or without controlled ice-nucleation. Our data indicate that extracellular freezing may be required for leaf curling. Moreover, in both species, PIP2s were up-regulated at temperatures that fell in ice-nucleation temperature range. Such up-regulation could be associated with the bulk-water efflux caused by extracellular freezing. When leaves were frozen beyond the ice-nucleation temperature range, PIP2s were continuously down-regulated in R. catawbiense along with the progressive leaf curling, as also observed for RcPIP2;2 in dehydrated leaves; as leaves uncurled during re-warming/rehydration, RcPIP2 expression was restored. On the other hand, R. ponticum, a non-curling species, exhibited substantial up-regulation of RpPIP2s during freezing/dehydration. Taken together, our data suggest that RcPIP2 down-regulation was associated with leaf curling. Moreover, the contrasting PIP2 expression patterns combined with leaf behavior of R. catawbiense and R. ponticum under these two cycles may reflect different strategies employed by these two species to tolerate/resist cellular dehydration.  相似文献   

3.
Thermonastic leaf movements: a synthesis of research with Rhododendron   总被引:1,自引:0,他引:1  
Thermonastic leaf movements in Rhododendron L. occur in response to freezing temperatures. These movements are composed of leaf curling and leaf angle changes that are distinct leaf movements with different responses to climatic factors. Leaf angle is controlled by the hydration of the petiole, as affected by soil water content, atmospheric vapour pressure, and air temperature. In contrast, leaf curling is a specific response to leaf temperature, and bulk leaf hydration has little effect. The physiological cause of leaf curling is not well understood, but the mechanism must lie in the physiology of the cell wall and/or regional changes in tissue hydration. Available evidence suggests that intercellular freezing is not a cause of leaf curling.
Manipulation experiments demonstrate that changes in leaf orientation in Rhododendron most likely serve to protect the leaves from membrane damage due to high irradiance and cold temperatures. In particular, the pendent leaves protect the chloroplast from photoinhibition. Leaf curling may serve to slow the rate of thaw following freezing, a common phenomenon in the Appalachian mountains of the U.S. The thermonastic leaf movements have a greater importance to plants in a dim environment because the potential impact to canopy carbon gain is greater than in high light environments.
These leaf movements have several implications for horticultural management. There seems to be a trade-off between water stress tolerance and freezing stress tolerance by leaf movements. Thermonastic leaf movements may be a major mechanism of cold stress tolerance in Rhododendron species. The actual physiological cause of leaf movement has not been elucidated and many more species need to be evaluated to verify the general importance of leaf movements to Rhododendron ecology and evolution.  相似文献   

4.
The effect of decreases in turgor on chloroplast activity was studied by measuring the photochemical activity of intact sunflower (Helianthus annuus L. cv. Russian Mammoth) leaves having low water potentials. Leaf turgor, calculated from leaf water potential and osmotic potential, was found to be affected by the dilution of cell contents by water in the cell walls, when osmotic potentials were measured with a thermocouple psychrometer. After the correction of measurements of leaf osmotic potential, both the thermocouple psychrometer and a pressure chamber indicated that turgor became zero in sunflower leaves at leaf water potentials of −10 bars. Since most of the loss in photochemical activity occurred at water potentials below −10 bars, it was concluded that turgor had little effect on the photochemical activity of the leaves.  相似文献   

5.
Summary Leaf orientation (azimuth and angle) and leaf curling were measured seasonally and diurnally on Rhododendron maximum L. under an evergreen and a deciduous canopy. The microclimatic conditions under the evergreen canopy (mixed pine and hemlock) were characterized by lower irradiance but similar temperature, and vapor pressure deficit (vpd) to that under the deciduous canopy (mixed oak and maple). Under both canopies irradiance was more intense during winter months.On a seasonal basis leaf angle was closer to horizontal under the evergreen canopy but there was no difference between leaf curling in the two sites. Stomatal conductance was higher under the deciduous canopy but stomata were closed in the winter (following canopy abscission) under the evergreen and deciduous canopies even during warm winter days. Leaf water potentials were lower in the winter and Rhododendron maximum had higher leaf water potentials under the evergreen canopy.Significant association between mean leaf angle and curling index were found above a mean leaf angle of 70°. Leaf curling was highly associated with leaf temperature where 0° C was a critical value stimulating leaf curling. Leaf angle was linearly related to leaf temperatures above 0° C although this relationship was different under the two canopy types as a result of differing irradiance or differing water potential.  相似文献   

6.
Plant water status, leaf tissue pressure-volume relationships, and photosynthetic gas exchange were monitored in five coffee (Coffea arabica L.) cultivars growing in drying soil in the field. There were large differences among cultivars in the rates at which leaf water potential (ΨL) and gas exchange activity declined when irrigation was discontinued. Pressure-volume curve analysis indicated that increased leaf water deficits in droughted plants led to reductions in bulk leaf elasticity, osmotic potential, and in the ΨL at which turgor loss occurred. Adjustments in ΨL at zero turgor were not sufficient to prevent loss or near loss of turgor in three of five cultivars at the lowest values of midday ΨL attained. Maintenance of protoplasmic volume was more pronounced than maintenance of turgor as soil drying progressed. Changes in assimilation and stomatal conductance were largely independent of changes in bulk leaf turgor, but were associated with changes in relative symplast volume. It is suggested that osmotic and elastic adjustment contributed to maintenance of gas exchange in droughted coffee leaves probably through their effects on symplast volume rather than turgor.  相似文献   

7.
A three‐domain pressure–volume relationship (PV curve) was studied in relation to leaf anatomical structure during dehydration in the grey mangrove, Avicennia marina. In domain 1, relative water content (RWC) declined 13% with 0.85 MPa decrease in leaf water potential, reflecting a decrease in extracellular water stored primarily in trichomes and petiolar cisternae. In domain 2, RWC decreased by another 12% with a further reduction in leaf water potential to ?5.1 MPa, the turgor loss point. Given the osmotic potential at full turgor (?4.2 MPa) and the effective modulus of elasticity (~40 MPa), domain 2 emphasized the role of cell wall elasticity in conserving cellular hydration during leaf water loss. Domain 3 was dominated by osmotic effects and characterized by plasmolysis in most tissues and cell types without cell wall collapse. Extracellular and cellular water storage could support an evaporation rate of 1 mmol m?2s?1 for up to 54 and 50 min, respectively, before turgor loss was reached. This study emphasized the importance of leaf anatomy for the interpretation of PV curves, and identified extracellular water storage sites that enable transient water use without substantive turgor loss when other factors, such as high soil salinity, constrain rates of water transport.  相似文献   

8.
Turgor and growth at low water potentials   总被引:16,自引:8,他引:8       下载免费PDF全文
Turgor affects cell enlargement but has not been measured in enlarging tissue of intact plants when growth is inhibited by inadequate water. Mature or excised tissue can be problematic for these measurements because turgor may not be the same as in intact enlarging cells. Therefore, we measured the average turgor in the elongating region of intact stems of soybean (Glycine max [L.] Merr.) while the seedlings were exposed to low water potentials by transplanting to vermiculite of low water content. Stem growth was completely inhibited by the transplanting, and the average turgor decreased in the mature stem tissue. However, it did not decrease in the elongating region whether measured in intact or excised tissue (total of four methods). At the cellular level, turgor was uniform in the elongating tissue except at transplanting, when turgor decreased in a small number of cortical cells near the xylem. The reduced turgor in these cells, but constant turgor in most of the cells, confirmed that no general turgor loss had occurred but indicated that gradients in water potential extending from the xylem into the enlarging tissue were reduced, thus decreasing the movement of water into the tissue for cell enlargement. A modest growth recovery occurred after 2 days and was preceded by a recovery of the gradient. This suggests that under these conditions, growth initially was inhibited not by turgor loss but by a collapse of the water potential gradient necessary for the growth process.  相似文献   

9.
This study examined the linkage between xylem vulnerability, stomatal response to leaf water potential (ΨL), and loss of leaf turgor in eight species of seasonally dry tropical forest trees. In order to maximize the potential variation in these traits species that exhibit a range of leaf habits and phenologies were selected. It was found that in all species stomatal conductance was responsive to ΨL over a narrow range of water potentials, and that ΨL inducing 50% stomatal closure was correlated with both the ΨL inducing a 20% loss of xylem hydraulic conductivity and leaf water potential at turgor loss in all species. In contrast, there was no correlation between the water potential causing a 50% loss of conductivity in the stem xylem, and the water potential at stomatal closure (ΨSC) amongst species. It was concluded that although both leaf and xylem characters are correlated with the response of stomata to ΨL, there is considerable flexibility in this linkage. The range of responses is discussed in terms of the differing leaf‐loss strategies exhibited by these species.  相似文献   

10.
Osmotic adjustment in Rosa hybrida L. cv Samantha was characterized by the pressure-volume approach in drought-acclimated and unacclimated plants brought to the same level of drought strain, as assayed by stomatal closure. Plants were colonized by either of the vesicular-arbuscular mycorrhizal fungi Glomus deserticola Trappe, Bloss and Menge or G. intraradices Schenck and Smith, or were nonmycorrhizal. Both the acclimation and the mycorrhizal treatments decreased the osmotic potential (Ψπ) of leaves at full turgor and at the turgor loss point, with a corresponding increase in pressure potential at full turgor. Mycorrhizae enabled plants to maintain leaf turgor and conductance at greater tissue water deficits, and lower leaf and soil water potentials, when compared with nonmycorrhizal plants. As indicated by the Ψπ at the turgor loss point, the active Ψπ depression which attended mycorrhizal colonization alone was 0.4 to 0.6 megapascals, and mycorrhizal colonization and acclimation in concert 0.6 to 0.9 megapascals, relative to unacclimated controls without mycorrhizae. Colonization levels and sporulation were higher in plants subjected to acclimation. In unacclimated hosts, leaf water potential, water saturation deficit, and soil water potential at a particular level of drought strain were affected most by G. intraradices. G. deserticola had the greater effect after drought preconditioning.  相似文献   

11.
Physiological adjustments to enhance tolerance or avoidance of summer drought and winter freezing were studied in shallow- to deep-rooted Patagonian cold desert shrubs. We measured leaf water potential (ΨL), osmotic potential, tissue elasticity, stem hydraulic characteristics, and stomatal conductance (g S) across species throughout the year, and assessed tissue damage by subzero temperatures during winter. Species behavior was highly dependent on rooting depth. Substantial osmotic adjustment (up to 1.2?MPa) was observed in deep-rooted species exhibiting relatively small seasonal variations in ΨL and with access to a more stable water source, but having a large difference between predawn and midday ΨL. On the other hand, shallow-rooted species exposed to large seasonal changes in ΨL showed limited osmotic adjustment and incomplete stomatal closure, resulting in turgor loss during periods of drought. The bulk leaf tissue elastic modulus (ε) was lower in species with relatively shallow roots. Daily variation in g S was larger in shallow-rooted species (more than 50?% of its maximum) and was negatively associated with the difference between ΨL at the turgor loss point and minimum ΨL (safety margin for turgor maintenance). All species increased ε by about 10?MPa during winter. Species with rigid tissue walls exhibited low leaf tissue damage at ?20?°C. Our results suggest that osmotic adjustment was the main water relationship adaptation to cope with drought during summer and spring, particularly in deep-rooted plants, and that adjustments in cell wall rigidity during the winter helped to enhance freezing tolerance.  相似文献   

12.
Leaf and stem functional traits related to plant water relations were studied for six congeneric species pairs, each composed of one tree species typical of savanna habitats and another typical of adjacent forest habitats, to determine whether there were intrinsic differences in plant hydraulics between these two functional types. Only individuals growing in savanna habitats were studied. Most stem traits, including wood density, the xylem water potential at 50% loss of hydraulic conductivity, sapwood area specific conductivity, and leaf area specific conductivity did not differ significantly between savanna and forest species. However, maximum leaf hydraulic conductance (K leaf) and leaf capacitance tended to be higher in savanna species. Predawn leaf water potential and leaf mass per area were also higher in savanna species in all congeneric pairs. Hydraulic vulnerability curves of stems and leaves indicated that leaves were more vulnerable to drought-induced cavitation than terminal branches regardless of genus. The midday K leaf values estimated from leaf vulnerability curves were very low implying that daily embolism repair may occur in leaves. An electric circuit analog model predicted that, compared to forest species, savanna species took longer for their leaf water potentials to drop from predawn values to values corresponding to 50% loss of K leaf or to the turgor loss points, suggesting that savanna species were more buffered from changes in leaf water potential. The results of this study suggest that the relative success of savanna over forest species in savanna is related in part to their ability to cope with drought, which is determined more by leaf than by stem hydraulic traits. Variation among genera accounted for a large proportion of the total variance in most traits, which indicates that, despite different selective pressures in savanna and forest habitats, phylogeny has a stronger effect than habitat in determining most hydraulic traits.  相似文献   

13.
Using the pressure-bomb to construct pressure-volume curves, a cellular basis of differential drought resistance was found between Callitris columellaris (F. Muell), Eucalyptus melliodora A. Cunn. ex Schauer, and Eucalyptus microcarpa Maiden. Between these three species differences were found in bound water, relative water content and water potential at zero turgor, osmotic potential at full turgor and bulk modulus of elasticity. It is suggested that these parameters showed C. columellaris to be the most, and E. melliodora the least drought resistant of the three species. Preliminary studies also showed that drought hardening may involve an increase in bound water content, dry weight: turgid weight ratio and a decrease in osmotic potential at full turgor and water potential at zero turgor.  相似文献   

14.
15.
Tissue-water relations were used to characterize the responses of two Mediterranean co-occurring woody species (Quercus ilex L. and Phillyrea latifolia L.) to seasonal and experimental drought conditions. Soil water availability was reduced 15% by partially excluding rain throughfall and lateral flow (water runoff). Seasonal and experimental drought elicited physiological and morphological adaptations other than osmotic adjustment: both species showed large increases in cell-wall elasticity and decreased saturated-to-dry-mass ratio. Increased elasticity (lower elastic modulus) resulted in concurrent decreases in relative water content at turgor loss. In addition, P. latifolia showed significant increases in apoplastic water fraction. Decreased saturated-to-dry-mass ratio and increased apoplastic water fraction were accompanied by an increased range of turgor maintenance, which indicates that leaf sclerophyllous traits might be advantageous in drier scenarios. In contrast, the degree of sclerophylly (as assessed by the leaf mass-to-area ratio) was not related to tissue elasticity. An 15% reduction in soil water availability resulted in significant reductions in diameter growth when compared to control plants in both species. Moreover, although P. latifolia underwent larger changes in tissue water-related traits than Q. ilex in response to decreasing water availability, growth was more sensitive to water stress in P. latifolia than in Q. ilex. Differences in diameter growth between species might be partially linked to the effects of cell-wall elasticity and turgor pressure on growth, since Q. ilex showed higher tissue elasticity and higher intrinsic tolerance to water deficit (as indicated by lower relative water content at turgor loss) than P. latifolia.  相似文献   

16.
Relationship of water potential to growth of leaves   总被引:33,自引:9,他引:24       下载免费PDF全文
Boyer JS 《Plant physiology》1968,43(7):1056-1062
A thermocouple psychrometer that measures water potentials of intact leaves was used to study the water potentials at which leaves grow. Water potentials and water uptake during recovery from water deficits were measured simultaneously with leaves of sunflower (Helianthus annuus L.), tomato (Lycopersicon esculentum Mill.), papaya (Carica papaya L.), and Abutilon striatum Dickson. Recovery occurred in 2 phases. The first was associated with elimination of water deficits; the second with cell enlargement. The second phase was characterized by a steady rate of water uptake and a relatively constant leaf water potential. Enlargement was 70% irreversible and could be inhibited by puromycin and actinomycin D. During this time, leaves growing with their petioles in contact with pure water remained at a water potential of —1.5 to —2.5 bars regardless of the length of the experiment. It was not possible to obtain growing leaf tissue with a water potential of zero. It was concluded that leaves are not in equilibrium with the potential of the water which is absorbed during growth. The nonequilibrium is brought about by a resistance to water flow which requires a potential difference of 1.5 to 2.5 bars in order to supply water at the rate necessary for maximum growth.

Leaf growth occurred in sunflower only when leaf water potentials were above —3.5 bars. Sunflower leaves therefore require a minimum turgor for enlargement, in this instance equivalent to a turgor of about 6.5 bars. The high water potentials required for growth favored rapid leaf growth at night and reduced growth during the day.

  相似文献   

17.
Abstract. Diurnal measurements of total water potential and stomatal opening were made at six sites. Pressure-volume curves were established on parallel leaf samples. In eastern Austria, the species investigated were Cornus mas L., Cornus sanguinea L., Crateagus monogyna Jacq., Sorbus aria (L.) Crantz and Viburnum lantana L. in southern France Crateagus monogyna , and in southern Turkey Crateagus monogyna and Olea europaea L. Osmotic adjustment, defined as a change in osmotic potential larger than the passive change resulting from the loss of cell water, was relatively small from day to day or week to week in mature, non-senescing leaves. Cornus sanguinea was an exception. A recently suggested method for the demonstration of diurnal active osmotic adjustment seems not to be reliable without further independent corroboration. Changes in the leaf water potential threshold for stomatal closure were either insignificant when the pressure-volume characteristics of the plant material were stable, or significant when shifts in such parameters as the turgor loss point occurred ( Cornus sanguinea ).  相似文献   

18.
Two tomato species (Lycopersicon esculentum andL. pennellii) were grown under unheated plastic greenhouse and irrigated with 0 or 140 mM NaCl. Salinity induces a more important reduction in predawn leaf water potential (ψpd) inL. esculentum than inL. pennellii. In both species the osmotic adjustment was achieved by active solute accumulation. The leaf water potential at turgor loss point (ψtlp) seemed to be controlled by leaf osmotic potential (ψos). The results revealed the existence of limits to the accumulation of osmotic solutes in leaf tissues and the existence of an ontogenetic effect on the solute accumulation. In both species, but essentially inL. pennellii the inorganic solutes contribution especially Na+ and Cl? accumulation to ψos was higher than the organic solutes. Therefore, wild species save energy more markedly.  相似文献   

19.
Turner, L. B. and Stewart, G. R. 1988. Factors affecting polyamineaccumulation in barley (Hordeum vulgare L.) leaf sections duringosmotic stress.-J. exp. Bot. 39: 311–316. Polyamine concentrations in peeled leaf sections of Hordeumvulgare were unaffected by decreases in leaf water potentialif osmotic adjustment took place and leaf turgor was maintained.Putrescine accumulation occurred concomitantly with a decreasein leaf turgor. Increases in the order of 3-to 4-fold were observed.An apparently greater putrescine accumulation (7-fold) occurredwhen leaf sections were osmotically stressed in the presenceof exogenous phosphate ions. This was the result of water lossfrom the tissue and the large decline which occurred in theputrescine levels of control tissue sections incubated withphosphate ions. Putrescine accumulation was at its maximum after4 h osmotic stress. In contrast, proline accumulation took placebetween 4 h and 24 h after the imposition of osmotic stress. Key words: Hordeum vulgare, osmotic stress, polyamine  相似文献   

20.
S. J. Colombo  Y. Teng 《Oecologia》1992,92(3):410-415
Seasonal variation in water relations of 3-yearold white spruce (Picea glauca (Moench) Voss) shoots, monitored with pressure-volume curves over 28 months, was closely related to shoot phenology and was sensitive to environmental fluctuations during both summer growth and winter dormancy. Turgor maintenance capacity was lowest during rapid shoot elongation from late May to early July; this was indicated by the lowest total turgor pressures, the highest (least negative) osmotic potentials at full turgor and the turgor loss point, the smallest differences between osmotic potentials at full turgor and the turgor loss point, the highest relative water contents at turgor loss and a linear decline in cell elasticity with decreasing turgor pressure. This suggests that the high susceptibility of white spruce seedlings to growth check after transplanting is largely attributable to the poor turgor maintenance capacity of this species in early summer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号