首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The major pulmonary antioxidant enzyme involved in the protection of the lung interstitium from oxidative stress is extracellular superoxide dismutase (EC-SOD). It has been previously shown that EC-SOD knock-out mice are more susceptible to bleomycin-induced lung injury, however, the molecular mechanism(s) remains unclear. We report here that bleomycin-induced lung damage, in EC-SOD KO mice, is associated with increased hyaluronan release into alveolar fluid. Analysis of hyaluronan synthase gene expression and hyaluronan molecular weight distribution suggested that elevated levels of hyaluronan in the alveolar fluid are mostly due to its release from the interstitium. Our results indicate that EC-SOD attenuates bleomycin-induced pulmonary injury, at least in part, by preventing superoxide-mediated release of hyaluronan into alveolar space.  相似文献   

2.
Extracellular superoxide dismutase (EC-SOD) is the main antioxidant enzyme in the extracellular matrix. We developed transgenic mice to analyze the EC-SOD promoter activity in vivo in real time and to identify the important cis-elements flanking the 5′ region of the murine EC-SOD gene. Using this model, we demonstrated that luciferase reporter activity correlates closely with endogenous EC-SOD expression, although several interesting differences were also observed. Specifically, luciferase activity was detected at the highest levels in testes, aorta and perirenal fat. Reporter expression was regulated by interferon gamma, a finding that is in agreement with published endogenous EC-SOD gene expression studies. Thus, the 5′-flanking region of mouse EC-SOD gene is responsible, at least in part, for cell specific and inducible expression.  相似文献   

3.
The antioxidant enzyme extracellular superoxide dismutase (EC-SOD) is mainly found in the extracellular matrix of tissues. EC-SOD participates in the detoxification of reactive oxygen species by catalyzing the dismutation of superoxide radicals. The tissue distribution of the enzyme is particularly important because of the reactive nature of its substrate, and it is likely essential that EC-SOD is positioned at the site of superoxide production to prevent adventitious oxidation. EC-SOD contains a C-terminal heparin-binding region thought to be important for modulating its distribution in the extracellular matrix. This paper demonstrates that, in addition to binding heparin, EC-SOD specifically binds to type I collagen with a dissociation constant (K(d)) of 200 nm. The heparin-binding region was found to mediate the interaction with collagen. Notably, the bound EC-SOD significantly protects type I collagen from oxidative fragmentation. This expands the known repertoire of EC-SOD binding partners and may play an important physiological role in preventing oxidative fragmentation of collagen during oxidative stress.  相似文献   

4.
The human c10orf10 gene product, also known as decidual protein induced by progesterone (DEPP), is known to be differentially regulated in mouse tissues in response to hypoxia and oxidative stress, however its biological function remains unknown. We found that mice lacking extracellular superoxide dismutase (EC-SOD) show attenuated expression of DEPP in response to acute hypoxia. DEPP mRNA levels, as well as the activity of a reporter gene expressed under the control of the DEPP 5′-flanking region, were significantly upregulated in Hep3B and Vero cells overexpressing EC-SOD. Subcellular fractionation and immunofluorescent microscopy indicated that overexpressed DEPP is co-localized with both protein aggregates and aggresomes. Further biochemical characterization indicates that DEPP protein is unstable and undergoes rapid degradation. Inhibition of proteasome activities significantly increases DEPP protein levels in soluble and insoluble cytosolic fractions. Attenuation of autophagosomal activity by 3-methyladenine increases DEPP protein levels while activation of autophagy by rapamycin reduced DEPP protein levels. In addition, ectopic overexpression of DEPP leads to autophagy activation, while silencing of DEPP attenuates autophagy. Collectively, these results indicate that DEPP is a major hypoxia-inducible gene involved in the activation of autophagy and whose expression is regulated by oxidative stress.  相似文献   

5.
Extracellular superoxide dismutase (EC-SOD) is an antioxidant enzyme that attenuates brain and lung injury from oxidative stress. A polybasic region in the carboxyl terminus distinguishes EC-SOD from other superoxide dismutases and determines EC-SOD's tissue half-life and affinity for heparin. There are two types of EC-SOD that differ based on the presence or absence of this heparin-binding region. It has recently been shown that proteolytic removal of the heparin-binding region is an intracellular event (Enghild, J. J., Thogersen, I. B., Oury, T. D., Valnickova, Z., Hojrup, P., and Crapo, J. D. (1999) J. Biol. Chem. 274, 14818-14822). By using mammalian cell lines, we have now determined that removal of the heparin-binding region occurs after passage through the Golgi network but before being secreted into the extracellular space. Specific protease inhibitors and overexpression of intracellular proteases implicate furin as a processing protease. In vitro experiments using furin and purified EC-SOD suggest that furin proteolytically cleaves EC-SOD in the middle of the polybasic region and then requires an additional carboxypeptidase to remove the remaining lysines and arginines. A mutation in Arg(213) renders EC-SOD resistant to furin processing. These results indicate that furin-dependent processing of EC-SOD is important for determining the tissue distribution and half-life of EC-SOD.  相似文献   

6.
The antioxidant protein extracellular superoxide dismutase (EC-SOD) encompasses a C-terminal region that mediates interactions with a number of ligands in the extracellular matrix (ECM). This ECM-binding region can be removed by limited proteolysis before secretion, thus supporting the formation of EC-SOD tetramers with variable binding capacity. The ECM-binding region contains a cysteine residue (Cys219) that is known to be involved in an intersubunit disulfide bridge. We have determined the redox potential of this disulfide bridge and show that both EC-SOD dimers and EC-SOD monomers are present within the intracellular space. The proteolytic processing of the ECM-binding region in vitro was modulated by the redox status of Cys219, allowing cleavage under reducing conditions only. When wild-type EC-SOD or the monomeric variant Cys219Ser was expressed in mammalian cells proteolysis did not occur. However, when cells were exposed to oxidative stress conditions, proteolytic processing was observed for wild-type EC-SOD but not for the Cys219Ser variant. Although the cellular response to oxidative stress is complex, our data suggest that proteolytic removal of the ECM-binding region is regulated by the intracellular generation of an EC-SOD monomer and that Cys219 plays an important role as a redox switch allowing the cellular machinery to secrete cleaved EC-SOD.  相似文献   

7.
A balance between production and degradation of reactive oxygen species (ROS) is critical for maintaining cellular homeostasis. Increased levels of ROS during oxidative stress are associated with disease conditions. Antioxidant enzymes, such as extracellular superoxide dismutase (EC-SOD), in the extracellular matrix (ECM) neutralize the toxicity of superoxide. Recent studies have emphasized the importance of EC-SOD in protecting the brain, lungs, and other tissues from oxidative stress. Therefore, EC-SOD would be an excellent therapeutic drug for treatment of diseases caused by oxidative stress. We cloned both the full length (residues 1–240) and truncated (residues 19–240) forms of human EC-SOD (hEC-SOD) into the donor plasmid pFastBacHTb. After transposition, the bacmid was transfected into the Sf9-baculovirus expression system and the expressed hEC-SOD purified using FLAG-tag. Western blot analysis revealed that hEC-SOD is present both as a monomer (33 kDa) and a dimer (66 kDa), as detected by the FLAG antibody. A water-soluble tetrazolium (WST-1) assay showed that both full length and truncated hEC-SOD proteins were enzymatically active. We showed that a potent superoxide dismutase inhibitor, diethyldithiocarbamate (DDC), inhibits hEC-SOD activity.  相似文献   

8.
Extracellular superoxide dismutase (EC-SOD), the only known enzymatic scavenger of extracellular superoxide, may modulate reactions of nitric oxide (NO) in the lungs by preventing reactions between superoxide and NO. The regulation of EC-SOD has not been examined in developing lungs. We hypothesize that EC-SOD plays a pivotal role in the response to increased oxygen tension and NO in the neonatal lung. This study characterizes rabbit EC-SOD and investigates the developmental regulation of EC-SOD activity, protein expression, and localization. Purified rabbit EC-SOD was found to have several unique biochemical attributes distinct from EC-SOD in other species. Rabbit lung EC-SOD contains predominantly uncleaved subunits that do not form disulfide-linked dimers. The lack of intersubunit disulfide bonds may contribute to the decreased heparin affinity and lower EC-SOD content in rabbit lung. EC-SOD activity in rabbit lungs is low before birth and increases soon after gestation. In addition, the enzyme is localized intracellularly in preterm and term rabbit lungs. Secretion of active EC-SOD into the extracellular compartment increases with age. The changes in EC-SOD localization and activity have implications for the neonatal pulmonary response to oxidative stress and the biological activity of NO at birth.  相似文献   

9.
Human extracellular superoxide dismutase (EC-SOD) was purified to homogeneity from lung tissue and the nature of the binding of heparin to EC-SOD was investigated. The enzyme was purified using three column chromatographic steps, and 127 μg of purified EC-SOD was obtained. A specific anti-human EC-SOD antibody was obtained by immunization with the purified enzyme. Western blot analysis of the heparin affinity chromatography product indicated that the presence of the inter-subunit disulfide bond affects the affinity of EC-SOD for heparin. The affinity of EC-SOD for heparin is a very important feature of the enzyme because it controls the distribution of the enzyme in tissues. The present study suggests that, not only the processing of the C-terminal region but inter-subunit disulfide bonds also play a role in determining the tissue distribution of EC-SOD. Moreover, the results obtained here also suggest that the redox state of the tissues might regulate the function of the EC-SOD.  相似文献   

10.
Extracellular superoxide dismutase (EC-SOD) is an antioxidant enzyme that breaks down superoxide anion into oxygen and hydrogen peroxide in extracellular spaces and plays key roles in controlling pulmonary and vascular diseases in response to oxidative stresses. We aimed to investigate the role of EC-SOD in angiogenesis and inflammation in chronic inflammatory skin disorders such as psoriasis. Overexpressed EC-SOD reduced expression of angiogenic factors and proinflammatory mediators in hypoxia-induced keratinocytes and in ultraviolet B-irradiated mice, whereas the expression of the antiangiogenic factor tissue inhibitor of metalloproteinase-1 and anti-inflammatory cytokine interleukin-10 were increased. EC-SOD decreased new vessel formation, epidermal edema, and inflammatory cell infiltration in UVB-irradiated transgenic mice. Moreover, cells treated with recombinant human EC-SOD showed inhibited endothelial tube formation and cell proliferation. Overall, the antiangiogenic and anti-inflammatory effects of EC-SOD might be due to suppression of hypoxia-inducible factor-1α, protein kinase C, and nuclear factor-κB expression. Furthermore, EC-SOD expression in tissue from psoriasis patients was markedly decreased in psoriatic lesional and nonlesional skins from psoriasis patients in comparison to normal skin from healthy volunteers. Together, these results suggest that EC-SOD may provide a novel therapeutic approach to treating angiogenic and inflammatory skin diseases such as psoriasis.  相似文献   

11.
Extracellular superoxide dismutase   总被引:1,自引:0,他引:1  
The extracellular space is protected from oxidant stress by the antioxidant enzyme extracellular superoxide dismutase (EC-SOD), which is highly expressed in selected tissues including blood vessels, heart, lungs, kidney and placenta. EC-SOD contains a unique heparin-binding domain at its carboxy-terminus that establishes localization to the extracellular matrix where the enzyme scavenges superoxide anion. The EC-SOD heparin-binding domain can be removed by proteolytic cleavage, releasing active enzyme into the extracellular fluid. In addition to protecting against extracellular oxidative damage, EC-SOD, by scavenging superoxide, preserves nitric oxide bioactivity and facilitates hypoxia-induced gene expression. Loss of EC-SOD activity contributes to the pathogenesis of a number of diseases involving tissues with high levels of constitutive extracellular superoxide dismutase expression. A thorough understanding of the biological role of EC-SOD will be invaluable for developing novel therapies to prevent stress by extracellular oxidants.  相似文献   

12.
Human extracellular superoxide dismutase (EC-SOD) was purified to homogeneity from lung tissue and the nature of the binding of heparin to EC-SOD was investigated. The enzyme was purified using three column chromatographic steps, and 127 μg of purified EC-SOD was obtained. A specific anti-human EC-SOD antibody was obtained by immunization with the purified enzyme. Western blot analysis of the heparin affinity chromatography product indicated that the presence of the inter-subunit disulfide bond affects the affinity of EC-SOD for heparin. The affinity of EC-SOD for heparin is a very important feature of the enzyme because it controls the distribution of the enzyme in tissues. The present study suggests that, not only the processing of the C-terminal region but inter-subunit disulfide bonds also play a role in determining the tissue distribution of EC-SOD. Moreover, the results obtained here also suggest that the redox state of the tissues might regulate the function of the EC-SOD.  相似文献   

13.
The high heparin affinity subtype C of the secretory enzyme extracellular superoxide dismutase (EC-SOD) exists in the body mainly complexed with extracellular sulfated glycosaminoglycans (SGAGs). Addition of sulfated polysaccharides to EC-SOD C resulted in a prompt partial inhibition of the enzymic activity, in most cases amounting to 10-17%, but with the large dextran sulfate 500,000 amounting to 35%. Complex formation between heparin and EC-SOD C could also be observed as increases in apparent molecular weight of the enzyme. The findings suggest that the binding sites for SGAGs on EC-SOD C are localized far from the active site and that EC-SOD in vivo associated with SGAGs should retain the major part of its enzymic activity. Studies with amino acid-specific reagents suggested that both lysine and arginine residues are involved in the binding of SGAGs. In particular, modification of only a few lysine residues/subunit resulted in loss of high SGAG affinity, whereas arginine modification resulted in loss of not only SGAG affinity but also enzymic activity. We propose that this is due to modification of Arg-186, which is homologous to the highly conserved arginine in the entrance to the active site of the copperzinc-SODs.  相似文献   

14.
We have examined the protein content and gene expression of three superoxide dismutase (SOD) isoenzymes in eight tissues from obese ob/ob mice, particularly placing the focus on extracellular-SOD (EC-SOD) in the white adipose tissue (WAT). Obesity significantly increased EC-SOD level in liver, kidney, testis, gastrocnemius muscle, WAT, brown adipose tissue (BAT), and plasma, but significantly decreased the isoenzyme level in lung. Tumor necrosis factor-alpha and interleukin-1beta contents in WAT were significantly higher in obese mice than in lean control mice. Immunohistochemically, both WAT and BAT from obese mice could be stained deeply with anti-mouse EC-SOD antibody compared with those from lean mice. Each primary culture per se almost time-dependently enhanced EC-SOD production, and overtly expressed its mRNA. The loss of heparin-binding affinity of EC-SOD type C with high affinity for heparin occurred in kidney of obese mice. These results suggest that the physiological importance of this SOD isoenzyme in WAT may be a compensatory adaptation to oxidative stress.  相似文献   

15.
Extracellular superoxide dismutase (EC-SOD) is expressed by both macrophages and neutrophils and is known to influence the inflammatory response. Upon activation, neutrophils generate hypochlorous acid (HOCl) and secrete proteases to combat invading microorganisms. This produces a hostile environment in which enzymatic activity in general is challenged. In this study, we show that EC-SOD exposed to physiologically relevant concentrations of HOCl remains enzymatically active and retains the heparin-binding capacity, although HOCl exposure established oxidative modification of the N-terminal region (Met32) and the formation of an intermolecular cross-link in a fraction of the molecules. The cross-linking was also induced by activated neutrophils. Moreover, we show that the neutrophil-derived proteases human neutrophil elastase and cathepsin G cleaved the N-terminal region of EC-SOD irrespective of HOCl oxidation. Although the cleavage by elastase did not affect the quaternary structure, the cleavage by cathepsin G dissociated the molecule to produce EC-SOD monomers. The present data suggest that EC-SOD is stable and active at the site of inflammation and that neutrophils have the capacity to modulate the biodistribution of the protein by generating EC-SOD monomers that can diffuse into tissue.  相似文献   

16.
We have examined the protein content and gene expression of three superoxide dismutase (SOD) isoenzymes in eight tissues from obese ob/ob mice, particularly placing the focus on extracellular-SOD (EC-SOD) in the white adipose tissue (WAT). Obesity significantly increased EC-SOD level in liver, kidney, testis, gastrocnemius muscle, WAT, brown adipose tissue (BAT), and plasma, but significantly decreased the isoenzyme level in lung. Tumor necrosis factor-α and interleukin-1β contents in WAT were significantly higher in obese mice than in lean control mice. Immunohistochemically, both WAT and BAT from obese mice could be stained deeply with anti-mouse EC-SOD antibody compared with those from lean mice. Each primary culture per se almost time-dependently enhanced EC-SOD production, and overtly expressed its mRNA. The loss of heparin-binding affinity of EC-SOD type C with high affinity for heparin occurred in kidney of obese mice. These results suggest that the physiological importance of this SOD isoenzyme in WAT may be a compensatory adaptation to oxidative stress.  相似文献   

17.
The secretory enzyme extracellular superoxide dismutase (EC-SOD) occurs in at least three forms, which differ with regard to heparin affinity: A lacks affinity, B has intermediate affinity, and C has relatively strong affinity. The affinity of EC-SOD C for various sulphated glycosaminoglycans (GAGs) was assessed (a) by determining the concentration of NaCl required to release the enzyme from GAG-substituted Sepharose 4B and (b) by determining the relative potencies of the GAGs to release EC-SOD C from heparan sulphate-Sepharose 4B. Both methods indicated the same order of affinity. Heparin bound EC-SOD C about 10 times as avidly as the studied heparan sulphate preparation, which in turn was 10 and 150 times as efficient as dermatan sulphate and chondroitin sulphate respectively. Chondroitin sulphate showed weak interaction with EC-SOD C at physiological ionic strength. Heparin subfractions with high or low affinity for antithrombin III were equally efficient. The binding of EC-SOD C to heparin-Sepharose was essentially independent of pH in the range 6.5-9; below pH 6.5 the affinity increased, and beyond pH 9.5 there was a precipitous fall in affinity. The inhibitory effect of NaCl on the binding of EC-SOD C to GAGs indicates that the interaction is of electrostatic nature. EC-SOD C carries a negative net charge at neutral pH, and it is suggested that the binding occurs between the negative charges of the GAG sulphate groups and a structure in the C-terminal end of the enzyme that has a cluster of positive charges. These results are compatible with the notion that heparan sulphate proteoglycans on cell surfaces or in the intercellular matrix may serve to bind EC-SOD C in tissues.  相似文献   

18.
Extracellular superoxide dismutase (EC-SOD) is responsible for the dismutation of the superoxide radical produced in the extracellular space and known to be expressed by inflammatory cells, including macrophages and neutrophils. Here we show that EC-SOD is produced by resting macrophages and associated with the cell surface via the extracellular matrix (ECM)-binding region. Upon cellular activation induced by lipopolysaccharide, EC-SOD is relocated and detected both in the cell culture medium and in lipid raft structures. Although the secreted material presented a significantly reduced ligand-binding capacity, this could not be correlated to proteolytic removal of the ECM-binding region, because the integrity of the material recovered from the medium was comparable to that of the cell surface-associated protein. The naturally occurring R213G amino acid substitution located in the ECM-binding region of EC-SOD is known to affect the binding characteristics of the protein. However, the analysis of macrophages expressing R213G EC-SOD did not present evidence of an altered cellular distribution. Our results suggest that EC-SOD plays a dynamic role in the inflammatory response mounted by activated macrophages.  相似文献   

19.
The effect of oxidative stress on the cellular uptake and nuclear translocation of extracellular superoxide dismutase (EC-SOD) was investigated. EC-SOD was incorporated from conditioned medium of stable EC-SOD expressing CHO-EK cells into 3T3-L1 cells within 15 min. The uptake was clearly inhibited by the addition of heparin at a concentration of 0.4 microg/ml. Treatment of the 3T3-L1 cells with H(2)O(2) (5 mM for 5 min), followed by incubation with CHO-EK medium downregulated the uptake of EC-SOD. Nuclear translocation of the incorporated EC-SOD was clearly enhanced by H(2)O(2) treatment following incubation with the CHO-EK medium. EC-SOD is the only anti-oxidant enzyme which is known at this time to be actively transported into nuclei. The results obtained here suggest that the upregulation of the nuclear translocation of EC-SOD by oxidative stress might play a role in the mechanism by which the nucleus is protected against oxidative damage of genomic DNA.  相似文献   

20.
Extracellular superoxide dismutase (EC-SOD) is expressed at high levels in lungs. EC-SOD has a polycationic matrix-binding domain that binds to polyanionic constituents in the matrix. Previous studies indicate that EC-SOD protects the lung in both bleomycin- and asbestos-induced models of pulmonary fibrosis. Although the mechanism of EC-SOD protection is not fully understood, these studies indicate that EC-SOD plays an important role in regulating inflammatory responses to pulmonary injury. Hyaluronan is a polyanionic high molecular mass polysaccharide found in the extracellular matrix that is sensitive to oxidant-mediated fragmentation. Recent studies found that elevated levels of low molecular mass hyaluronan are associated with inflammatory conditions. We hypothesize that EC-SOD may inhibit pulmonary inflammation in part by preventing superoxide-mediated fragmentation of hyaluronan to low molecular mass fragments. We found that EC-SOD directly binds to hyaluronan and significantly inhibits oxidant-induced degradation of this glycosaminoglycan. In vitro human polymorphic neutrophil chemotaxis studies indicate that oxidative fragmentation of hyaluronan results in polymorphic neutrophil chemotaxis and that EC-SOD can completely prevent this response. Intratracheal injection of crocidolite asbestos in mice leads to pulmonary inflammation and injury that is enhanced in EC-SOD knock-out mice. Notably, hyaluronan levels are increased in the bronchoalveolar lavage fluid after asbestos-induced pulmonary injury, and this response is markedly enhanced in EC-SOD knock-out mice. These data indicate that inhibition of oxidative hyaluronan fragmentation probably represents one mechanism by which EC-SOD inhibits inflammation in response to lung injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号