首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several homeotic genes controlling floral development have been isolated in both Antirrhinum and Arabidopsis. Based on the similarities in sequence and in the phenotypes elicited by mutations in some of these genes, it has been proposed that the regulatory hierarchy controlling floral development is comparable in these two species. We have performed a direct experimental test of this hypothesis by introducing a chimeric Antirrhinum Deficiens (DefA)/Arabidopsis APETALA3 (AP3) gene, under the control of the Arabidopsis AP3 promoter, into Arabidopsis. We demonstrated that this transgene is sufficient to partially complement severe mutations at the AP3 locus. In combination with a weak ap3 mutation, this transgene is capable of completely rescuing the mutant phenotype to a fully functional wild-type flower. These observations indicate that despite differences in DNA sequence and expression, DefA coding sequences can compensate for the loss of AP3 gene function. We discuss the implications of these results for the evolution of homeotic gene function in flowering plants.  相似文献   

2.
3.
At the beginning of the 1990s, a simple genetic model that explained flower development was presented based on Arabidopsis thaliana and Antirrhinum majus floral homeotic mutants. According to this model, which is a milestone in plant development studies, flower development can be explained by three classes of genes (A, B and C), each one controlling the identity of organs in two adjacent whorls. Intriguingly, more than 20 years later, there are still some unanswered questions, in particular regarding the universality of the class A-function genes. Class A genes are well characterised in A. thaliana, but so far no A mutants have been described in other plant species nor in Antirrhinum majus. Here, we retrace the story that led to the proposal of the ABC model focusing on the contribution of A. majus to this model. Although fewer groups are still using A. majus as a model system, this plant was a master contributor to our comprehension of the molecular networks controlling flower development.  相似文献   

4.
In angiosperm flower development the identity of the floral organs is determined by the A, B and C factors. Here we present the characterisation of three homologues of the A class gene APETALA2 (AP2) from the conifer Picea abies (Norway spruce), Picea abies APETALA2 LIKE1 (PaAP2L1), PaAP2L2 and PaAP2L3. Similar to AP2 these genes contain sequence motifs complementary to miRNA172 that has been shown to regulate AP2 in Arabidopsis. The genes display distinct expression patterns during plant development; in the female-cone bud PaAP2L1 and PaAP2L3 are expressed in the seed-bearing ovuliferous scale in a pattern complementary to each other, and overlapping with the expression of the C class-related gene DAL2. To study the function of PaAP2L1 and PaAP2L2 the genes were expressed in Arabidopsis. The transgenic PaAP2L2 plants were stunted and flowered later than control plants. Flowers were indeterminate and produced an excess of floral organs most severely in the two inner whorls, associated with an ectopic expression of the meristem-regulating gene WUSCHEL. No homeotic changes in floral-organ identities occurred, but in the ap2-1 mutant background PaAP2L2 was able to promote petal identity, indicating that the spruce AP2 gene has the capacity to substitute for an A class gene in Arabidopsis. In spite of the long evolutionary distance between angiosperms and gymnosperms and the fact that gymnosperms lack structures homologous to sepals and petals our data supports a functional conservation of AP2 genes among the seed plants.  相似文献   

5.
6.
The ABC model of floral organ identity is based on studies of Arabidopsis and Antirrhinum, both of which are highly derived eudicots. Most of the genes required for the ABC functions in Arabidopsis and Antirrhinum are members of the MADS-box gene family, and their orthologs are present in all major angiosperm lineages. Although the eudicots comprise 75% of all angiosperms, most of the diversity in arrangement and number of floral parts is actually found among basal angiosperm lineages, for which little is known about the genes that control floral development. To investigate the conservation and divergence of expression patterns of floral MADS-box genes in basal angiosperms relative to eudicot model systems, we isolated several floral MADS-box genes and examined their expression patterns in representative species, including Amborella (Amborellaceae), Nuphar (Nymphaeaceae) and Illicium (Austrobaileyales), the successive sister groups to all other extant angiosperms, plus Magnolia and Asimina, members of the large magnoliid clade. Our results from multiple methods (relative-quantitative RT-PCR, real-time PCR and RNA in situ hybridization) revealed that expression patterns of floral MADS-box genes in basal angiosperms are broader than those of their counterparts in eudicots and monocots. In particular, (i) AP1 homologs are generally expressed in all floral organs and leaves, (ii) AP3/PI homologs are generally expressed in all floral organs and (iii) AG homologs are expressed in stamens and carpels of most basal angiosperms, in agreement with the expectations of the ABC model; however, an AG homolog is also expressed in the tepals of Illicium. The broader range of strong expression of AP3/PI homologs is inferred to be the ancestral pattern for all angiosperms and is also consistent with the gradual morphological intergradations often observed between adjacent floral organs in basal angiosperms.  相似文献   

7.
APETALA1 (AP1) and its homologue SQUAMOSA (SQUA) are key regulatory genes specifying floral meristem identity in the model plants Arabidopsis and Antirrhinum. Despite many similarities in their sequence, expression and functions, only AP1 appears to have the additional role of specifying sepal and petal identity. No true AP1/SQUA-functional homologues from any other plant species have been functionally studied in detail, therefore the question of how the different functions of AP1-like genes are conserved between species has not been addressed. We have isolated and characterized PEAM4, the AP1/SQUA-functional homologue from pea, a plant with a different floral morphology and inflorescence architecture to that of Arabidopsis or Antirrhinum. PEAM4 encodes for a polypeptide 76% identical to AP1, but lacks the C-terminal prenylation motif, common to AP1 and SQUA, that has been suggested to control the activity of AP1. Nevertheless, constitutive expression of PEAM4 caused early flowering in tobacco and Arabidopsis. In Arabidopsis, PEAM4 also caused inflorescence-to-flower transformations similar to constitutive AP1 expression, and was able to rescue the floral organ defects of the strong ap1-1 mutant. Our results suggest that the control of both floral meristem and floral organ identity by AP1 is not restricted to Arabidopsis, but is extended to species with diverse floral morphologies, such as pea.  相似文献   

8.
The specification of floral organ identity during development depends on the function of a limited number of homeotic genes grouped into three classes: A, B, and C. Pairs of paralogous B class genes, such as DEF and GLO in Antirrhinum, and AP3 and PI in Arabidopsis, are required for establishing petal and stamen identity. To gain a better understanding of the evolutionary origin of petals and stamens, we have looked for orthologs of B class genes in conifers. Here we report cDNA cloning of PrDGL (Pinus radiata DEF/GLO-like gene) from radiata pine. We provide phylogenetic evidence that PrDGL is closely related to both DEF- and GLO-like genes of angiosperms, and is thus among the first putative orthologs of floral homeotic B function genes ever reported from a gymnosperm. Expression of PrDGL is restricted to the pollen strobili (male cones) and was not detected in female cones. PrDGL expression was first detected in emergent male cone primordia and persisted through the early stages of pollen cone bud differentiation. Based on the results of our phylogeny reconstructions and expression studies, we suggest that PrDGL could play a role in distinguishing between male (where expression is on) and female reproductive structures (where expression is off) in radiata pine. We speculate that this could be the general function of DEF/GLO-like genes in gymnosperms that may have been recruited for the distinction between stamens and carpels, the male and female reproductive organs of flowering plants, during the evolution of angiosperms out of gymnosperm-like ancestors.  相似文献   

9.
10.
Floral organ identity genes in the orchid Dendrobium crumenatum   总被引:1,自引:0,他引:1  
Orchids are members of Orchidaceae, one of the largest families in the flowering plants. Among the angiosperms, orchids are unique in their floral patterning, particularly in floral structures and organ identity. The ABCDE model was proposed as a general model to explain flower development in diverse plant groups, however the extent to which this model is applicable to orchids is still unknown. To investigate the regulatory mechanisms underlying orchid flower development, we isolated candidates for A, B, C, D and E function genes from Dendrobium crumenatum. These include AP2-, PI/GLO-, AP3/DEF-, AG- and SEP-like genes. The expression profiles of these genes exhibited different patterns from their Arabidopsis orthologs in floral patterning. Functional studies showed that DcOPI and DcOAG1 could replace the functions of PI and AG in Arabidopsis, respectively. By using chimeric repressor silencing technology, DcOAP3A was found to be another putative B function gene. Yeast two-hybrid analysis demonstrated that DcOAP3A/B and DcOPI could form heterodimers. These heterodimers could further interact with DcOSEP to form higher protein complexes, similar to their orthologs in eudicots. Our findings suggested that there is partial conservation in the B and C function genes between Arabidopsis and orchid. However, gene duplication might have led to the divergence in gene expression and regulation, possibly followed by functional divergence, resulting in the unique floral ontogeny in orchids.  相似文献   

11.
In Arabidopsis, floral meristems arise in continuous succession directly on the flanks of the inflorescence meristem. Thus, the pathways that regulate inflorescence and floral meristem identity must operate both simultaneously and in close spatial proximity. The TERMINAL FLOWER 1 (TFL1) gene of Arabidopsis is required for normal inflorescence meristem function, and the LEAFY (LFY), APETALA 1 (AP1), and APETALA 2 (AP2) genes are required for normal floral meristem function. We present evidence that inflorescence meristem identity is promoted by TFL1 and that floral meristem identity is promoted by parallel developmental pathways, one defined by LFY and the other defined by AP1/AP2. Our analysis suggests that the acquisition of meristem identity during inflorescence development is mediated by antagonistic interactions between TFL1 and LFY and between TFL1 and AP1/AP2. Based on this study, we propose a simple model for the genetic regulation of inflorescence development in Arabidopsis. This model is discussed in relation to the proposed interactions between the inflorescence and the floral meristem identity genes and in regard to other genes that are likely to be part of the genetic hierarchy regulating the establishment and maintenance of inflorescence and floral meristems.  相似文献   

12.
13.
In both Antirrhinum (Antirrhinum majus) and Arabidopsis (Arabidopsis thaliana), the floral B-function, which specifies petal and stamen development, is embedded in a heterodimer consisting of one DEFICIENS (DEF)/APETALA3 (AP3)-like and one GLOBOSA (GLO)/PISTILLATA (PI)-like MADS box protein. Here, we demonstrate that gene duplications in both the DEF/AP3 and GLO/PI lineages in Petunia hybrida (petunia) have led to a functional diversification of their respective members, which is reflected by partner specificity and whorl-specific functions among these proteins. Previously, it has been shown that mutations in PhDEF (formerly known as GREEN PETALS) only affect petal development. We have isolated insertion alleles for PhGLO1 (FLORAL BINDING PROTEIN1) and PhGLO2 (PETUNIA MADS BOX GENE2) and demonstrate unique and redundant properties of PhDEF, PhGLO1, and PhGLO2. Besides a full homeotic conversion of petals to sepals and of stamens to carpels as observed in phglo1 phglo2 and phdef phglo2 flowers, we found that gene dosage effects for several mutant combinations cause qualitative and quantitative changes in whorl 2 and 3 meristem fate, and we show that the PHDEF/PHGLO1 heterodimer controls the fusion of the stamen filaments with the petal tube. Nevertheless, when the activity of PhDEF, PhGLO1, and PhGLO2 are considered jointly, they basically appear to function as DEF/GLO does in Antirrhinum and to a lesser extent as AP3/PI in Arabidopsis. By contrast, our data suggest that the function of the fourth B-class MADS box member, the paleoAP3-type PETUNIA HYBRIDA TM6 (PhTM6) gene, differs significantly from the known euAP3-type DEF/AP3-like proteins; PhTM6 is mainly expressed in the developing stamens and ovary of wild-type flowers, whereas its expression level is upregulated in whorls 1 and 2 of an A-function floral mutant; PhTM6 is most likely not involved in petal development. The latter is consistent with the hypothesis that the evolutionary origin of the higher eudicot petal structure coincided with the appearance of the euAP3-type MADS box genes.  相似文献   

14.
Flower development   总被引:1,自引:0,他引:1  
Several homeotic genes controlling flower development have been characterized in Antirrhinum and Arabidopsis. Comparisons of their mutant phenotypes, expression patterns and genetic interactions have revealed that many of the basic mechanisms controlling flower development have been conserved in evolution, although important differences in the balance and interactions of genes also exist.  相似文献   

15.
The majority of the Arabidopsis fruit comprises an ovary with three primary tissue types: the valves, the replum and the valve margins. The valves, which are derived from the ovary walls, are separated along their entire length by the replum. The valve margin, which consists of a separation layer and a lignified layer, forms as a narrow stripe of cells at the valve-replum boundaries. The valve margin identity genes are expressed at the valve-replum boundary and are negatively regulated by FUL and RPL in the valves and replum, respectively. In ful rpl double mutants, the valve margin identity genes become ectopically expressed, and, as a result, the entire outer surface of the ovary takes on valve margin identity. We carried out a genetic screen in this sensitized genetic background and identified a suppressor mutation that restored replum development. Surprisingly, we found that the corresponding suppressor gene was AP2, a gene that is well known for its role in floral organ identity, but whose role in Arabidopsis fruit development had not been previously described. We found that AP2 acts to prevent replum overgrowth by negatively regulating BP and RPL, two genes that normally act to promote replum formation. We also determined that AP2 acts to prevent overgrowth of the valve margin by repressing valve margin identity gene expression. We have incorporated AP2 into the current genetic network controlling fruit development in Arabidopsis.  相似文献   

16.
17.
U Halfter  N Ali  J Stockhaus  L Ren    N H Chua 《The EMBO journal》1994,13(6):1443-1449
Genetic studies in Arabidopsis and Antirrhinum showed that petal determination requires the concomitant expression of two homeotic functions, A and B, whereas the A function alone determines sepal identity. The B function is represented by at least two genes. The Petunia homeotic gene green petal (gp) is essential for petal determination as demonstrated by a Petunia gp mutant that has sepals instead of petals. We have used ectopic expression of the gp gene as a tool to study flower development in Petunia. CaMV 35S-gp expression leads to homeotic conversion of sepals into petaloid organs when expressed early in development. This demonstrates that a single homeotic gene is sufficient to induce homeotic conversion of sepals to petals, suggesting that other petal determining genes are regulated in part by ectopically expressed gp. Indeed, two other MADS-box-containing genes, pmads 2 and fbp 1, which show homology to the Antirrhinum B function gene globosa, are activated in the converted petal tissue. Furthermore, our data provide evidence for autoregulation of gp expression in the petaloid tissue and uncover the role of gp in fusion of petal tissues.  相似文献   

18.
Two low-molecular-weight proteins have been purified from Brassica napus pollen and a gene corresponding to one of them has been isolated. The gene encodes an 8.6-kD protein with two EF-hand calcium-binding motifs and is a member of a small gene family in B. napus. The protein is part of a family of pollen allergens recently identified in several evolutionarily distant dicot and monocot plants. Homologs have been detected in Arabidopsis, from which one gene has been cloned in this study, and in snapdragon (Antirrhinum majus), but not in tobacco (Nicotiana tabacum). Expression of the gene in B. napus was limited to male tissues and occurred during the pollen-maturation phase of anther development. Both the B. napus and Arabidopsis proteins interact with calcium, and the potential for a calcium-dependent conformational change was demonstrated. Given this affinity for calcium, the cloned genes were termed BPC1 and APC1 (B. napus and Arabidopsis pollen calcium-binding protein 1, respectively). Immunolocalization studies demonstrated that BPC1 is found in the cytosol of mature pollen. However, upon pollen hydration and germination, there is some apparent leakage of the protein to the pollen wall. BPC1 is also concentrated on or near the surface of the elongating pollen tube. The essential nature of calcium in pollen physiology, combined with the properties of BPC1 and its high evolutionary conservation suggests that this protein plays an important role in pollination by functioning as a calcium-sensitive signal molecule.  相似文献   

19.
Piwarzyk E  Yang Y  Jack T 《Plant physiology》2007,145(4):1495-1505
The B-class genes APETALA3 (AP3) and PISTILLATA (PI) in Arabidopsis (Arabidopsis thaliana) and their orthologs in other species have been the focus of studies to elucidate the development of petals and stamens in angiosperm flowers. Evolutionary analysis indicates that B-class genes have undergone multiple gene duplication events in angiosperms. The resultant B-class lineages are characterized by short, conserved amino acid sequences at the extreme C-terminal end of the B-class proteins. AP3 is a member of the euAP3 lineage that contains both the euAP3 and PI-derived motifs at the C terminus. PI is a member of the PI lineage that contains the C-terminal PI motif at the C terminus. Despite conservation over a wide evolutionary distance, the function of C-terminal motifs is not well understood. In this study, we demonstrate that truncated forms of AP3 and PI, which lack the conserved C-terminal motifs, function to direct floral organ identity specification in Arabidopsis plants. By contrast, larger truncations, which remove the third putative amphipathic alpha-helix in the K domain of AP3 or PI, are nonfunctional. We conclude that the euAP3 and PI-derived motifs of AP3 and the PI motif of PI are not essential for floral organ identity function of AP3 and PI in Arabidopsis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号