首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multidrug resistance (MDR) in model systems is known to be conferred by two different integral proteins, the 170-kDa P-glycoprotein (Pgp) and the 190-kDa multidrug resistance-associated protein (MRP1). One possible pharmacological approach to overcome drug resistance is the use of specific inhibitors, which enhance the cytotoxicity of known antineoplastic agents. However, while many compounds have been proven to be very efficient in inhibiting Pgp activity only some of them are able to inhibit MRP1. The other likely approach is based on the design and synthesis of new non-cross-resistant drugs with physicochemical properties favoring the uptake of the drug by the resistant cells. The intracellular drug retention influences its cytotoxic effect. The level of the intracellular drug content is a function of the amount of drug transported inside the cell (influx) and the amount of drug expelled from the cell (efflux). In this work, the kinetics of drug uptake and the kinetics of active efflux of several anthracycline derivatives in both Pgp expressing K562/Adr cells and MRP1 expressing GLC4/Adr cells was determined. Our data have shown that in both cell lines there is no correlation between the resistance factor and the kinetics of drug efflux by these pumping systems. However, a very good correlation between the resistance factor and the kinetics of drug uptake has been established in both cell lines: the resistance factor decreases when the kinetics of drug uptake increases. This work has clearly shown that when the rate of transmembrane transport of anthracycline is high enough, the efflux mediated by the protein transporter is not able to pace with it. The protein transporter essentially operates in a futile cycle and the resistance factor is tending to one. It does not mean, however, that when the resistance factor is close to one the anthracycline is not transported by the pump.  相似文献   

2.
Expression of a multidrug resistance gene (mdr1) and its protein product, P-glycoprotein (Pgp), has been correlated with the onset of multidrug resistance in vitro in human cell lines selected for resistance to chemotherapeutic agents derived from natural products. Expression of this gene has also been observed in normal tissues and human tumors, including neuroblastoma. We therefore examined total RNA prepared from human neuroblastoma cell lines before and after differentiation with retinoic acid or sodium butyrate. An increase in the level of mdr1 mRNA was observed after retinoic acid treatment of four neuroblastoma cell lines, including the SK-N-SH cell line. Western blot (immunoblot) analysis demonstrated concomitant increases in Pgp. However, studies of 3H-vinblastine uptake failed to show a concomitant Pgp-mediated decrease in cytotoxic drug accumulation. To provide evidence that Pgp was localized on the cell surface, an immunotoxin conjugate directed against Pgp was added to cells before and after treatment with retinoic acid. Incorporation of [3H]leucine was decreased by the immunotoxin in the retinoic acid-treated cells compared with the undifferentiated cells. These results demonstrate that whereas expression of the mdr1 gene can be modulated by differentiating agents, increased levels of expression are not necessarily associated with increased cytotoxic drug accumulation.  相似文献   

3.
Multidrug resistance (MDR) has been related to two members of the ABC-superfamily of transporters, P-glycoprotein (Pgp) and Multidrug Resistance-associated Protein (MRP). We have described a 110 kD protein termed the Lung Resistance-related Protein (LRP) that is overexpressed in several non-Pgp MDR cell lines of different histogenetic origin. Reversal of MDR parallels a decrease in LRP expression. In a panel of 61 cancer cell lines which have not been subjected to laboratory drug selection, LRP was a superior predictor forin vitro resistance to MDR-related drugs when compared to Pgp and MRP, and LRP's predictive value extended to MDR unrelated drugs, such as platinum compounds. LRP is widely distributed in clinical cancer specimens, but the frequency of LRP expression inversely correlates with the known chemosensitivity of different tumour types. Furthermore, LRP expression at diagnosis has been shown to be a strong and independent prognostic factor for response to chemotherapy and outcome in acute myeloid leukemia and ovarian carcinoma (platinum-based treatment) patients. Recently, LRP has been identified as the human major protein. Vaults are novel cellular organelles broadly distributed and highly conserved among diverse eukaryotic cells, suggesting that they play a role in fundamental cell processes. Vaults localise to nuclear pore complexes and may be the central plug of the nuclear pore complexes. Vaults structure and localisation support a transport function for this particle which could involve a variety of substrates. Vaults may therefore play a role in drug resistance by regulating the nucleocytoplasmic transport of drugs.Abbreviations LRP Lung Resistance-related Protein - MVP Major Vault Protein - MDR Multidrug resistance - MRP Multidrug resistance-associated Protein - NPC Nuclear Pore Complex - Pgp P-glycoprotein  相似文献   

4.
While P-glycoprotein (Pgp) is the most studied protein involved in resistance to anti-cancer drugs, its mechanism of action is still under debate. Studies of Pgp have used cell lines selected with chemotherapeutics which may have developed many mechanisms of resistance. To eliminate the confounding effects of drug selection on understanding the action of Pgp, we studied cells transiently transfected with a Pgp-green fluorescent protein (GFP) fusion protein. This method generated a mixed population of unselected cells with a wide range of Pgp-GFP expression levels and allowed simultaneous measurements of Pgp level and drug accumulation in living cells. The results showed that Pgp-GFP expression was inversely related to the accumulation of chemotherapeutic drugs. The reduction in drug concentration was reversed by agents that block multiple drug resistance (MDR) and by the UIC2 anti-Pgp antibody. Quantitative analysis revealed an inverse linear relationship between the fluorescence of Pgp-GFP and MDR dyes. This suggests that Pgp levels alone limit drug accumulation by active efflux; cooperativity between enzyme, substrate, or inhibitor molecules is not required. Additionally, Pgp-GFP expression did not change cellular pH. Our study demonstrates the value of using GFP fusion proteins for quantitative biochemistry in living cells.  相似文献   

5.
P-glycoprotein (Pgp), an efflux pump, was confirmed the first time to regulate the expressions of miR/gene in cells. Pgp is known to be associated with multidrug resistance. RHepG2 cells, the multidrug resistant subline of human hepatocellular carcinoma HepG2 cells, expressed higher levels of Pgp as well as miR-16, and lower level of Bcl-2 than the parental cells. In addition, RHepG2 cells were more radiation sensitive and showed more pronounced radiation-induced apoptotic cell death than the parental cells. Mechanistic analysis revealed that transfection with mdr1 specific antisense oligos suppressed radiation-induced apoptosis in HepG2 cells. On the other hand, ectopic mdr1 expression enhanced radiation-induced apoptosis in HepG2 cells, SK-HEP-1 cells, MiHa cells, and furthermore, induced miR-16 and suppressed its target gene Bcl-2 in HepG2 cells. Moreover, the enhancement effects of Pgp and miR-16 on radiation-induced apoptosis were counteracted by overexpression of Bcl-2. The Pgp effect on miR-16/Bcl-2 was suppressed by Pgp blocker verapamil indicating the importance of the efflux of Pgp substrates. The present study is the first to reveal the role of Pgp in regulation of miRNA/gene expressions. The findings may provide new perspective in understanding the biological function of Pgp.  相似文献   

6.
Development of multidrug resistance due to overexpression of P-glycoprotein (Pgp), a cell membrane drug efflux pump, occurs commonly during in vitro selections with adriamycin (Adr). Pgp-mediated drug resistance can be overcome by the calcium channel blocker verapamil (Vp), which acts as a competitive inhibitor of drug binding and efflux. In order to identify other mechanisms of Adr resistance, we isolated an Adr-resistant subline by selecting the human breast cancer cell line MCF-7 with incremental increases of Adr in the presence of 10 microgram/ml verapamil. The resultant MCF-7/AdrVp subline is 900-fold resistant to Adr, does not overexpress Pgp, and does not exhibit a decrease in Adr accumulation. It exhibits a unique cross-resistance pattern: high cross-resistance to the potent Adr analogue 3'-deamino-3'-(3-cyano-4-morpholinyl)doxorubicin, lower cross-resistance to the alkylating agent melphalan, and a sensitivity similar to the parental cell line to vinblastine. The levels of glutathione and glutathione S-transferase are similar in the parental line and the Adr-resistant subline. Topoisomerase II-DNA complexes measured by the potassium-sodium dodecyl sulfate precipitation method shows a 2-3 fold decrease in the resistant subline. The MCF-7/AdrVp cells overexpress a novel membrane protein with an apparent molecular mass of 95 kDa. Polyclonal antibodies raised against the P-95 protein demonstrate a correaltion between the level of expression and Adr resistance. Removal of Adr but not verapamil from the selection media results in a decline in P-95 protein levels that parallels a restoration of sensitivity to Adr. Immunohistochemistry demonstrates localization of the P-95 protein on the cell surface. The demonstration of high levels of the protein in clinical samples obtained from patients refractory to Adr suggests that this protein may play a role in clinical drug resistance.  相似文献   

7.
8.
P-glycoprotein (Pgp), a member of the adenosine triphosphate-binding cassette (ABC) transporter superfamily, is a major drug efflux pump expressed in normal tissues, and is overexpressed in many human cancers. Overexpression of Pgp results in reduced intracellular drug concentration and cytotoxicity of chemotherapeutic drugs and is thought to contribute to multidrug resistance of cancer cells. The involvement of Pgp in clinical drug resistance has led to a search for molecules that block Pgp transporter activity to improve the efficacy and pharmacokinetics of therapeutic agents. We have recently identified and characterized a secreted toxin from Pseudomonas aeruginosa, designated cystic fibrosis transmembrane conductance regulator (CFTR) inhibitory factor (Cif). Cif reduces the apical membrane abundance of CFTR, also an ABC transporter, and inhibits the CFTR-mediated chloride ion secretion by human airway and kidney epithelial cells. We report presently that Cif also inhibits the apical membrane abundance of Pgp in kidney, airway, and intestinal epithelial cells but has no effect on plasma membrane abundance of multidrug resistance protein 1 or 2. Cif increased the drug sensitivity to doxorubicin in kidney cells expressing Pgp by 10-fold and increased the cellular accumulation of daunorubicin by 2-fold. Thus our studies show that Cif increases the sensitivity of Pgp-overexpressing cells to doxorubicin, consistent with the hypothesis that Cif affects Pgp functional expression. These results suggest that Cif may be useful to develop a new class of specific inhibitors of Pgp aimed at increasing the sensitivity of tumors to chemotherapeutic drugs, and at improving the bioavailability of Pgp transport substrates.  相似文献   

9.
The multidrug resistance of cancer cells can be mediated by an overexpression of the human MDR1 and MRP genes, which encode the transmembrane efflux pumps, the 170 kDa P-glycoprotein (Pgp) and the 190 kDa multidrug resistance-associated protein (MRP), respectively. In this study, we investigate which protein is preferentially overexpressed in the function of doxorubicin concentrations in the acute myelogenous leukemia cell line (OCI/AML-2). Multidrug-resistant AML-2 sublines were isolated in doxorubicin concentrations of 20, 100, 250, and 500 ng/ml. MRP was at first expressed at low concentrations of less than 5 x IC50 (100 ng/ml) of doxorubicin followed by the overexpression of Pgp with concentrations of more than 12.5 x IC50 (250 ng/ml) of doxorubicin. In addition, it appeared that increased amounts of MRP and its mRNA in AML-2/DX20 and /DX100 decreased gradually in both AML-2/DX250 and /DX500 overexpressing Pgp. In conclusion, it is thought that the overexpression of MRP or Pgp is dependent upon drug concentrations. It could be implicated that the overexpression of MRP might be negatively related to that of Pgp.  相似文献   

10.
Multidrug resistance of murine leukaemic cell line L1210/VCR (obtained by adaptation of parental drug-sensitive L1210 cells to vincristine) is associated with overexpression of mdr1 gene product P-glycoprotein (Pgp)-the ATP-dependent drug efflux pump. 31P-NMR spectra of L1210 and L1210/VCR cells (the latter in the presence of vincristine) revealed, besides the decrease of ATP level, a considerable lower level of UDP-saccharides in L1210/VCR cells. Histochemical staining of negatively charged cell surface binding sites (mostly sialic acid) by ruthenium red (RR) revealed a compact layer of RR bound to the external coat of sensitive cells. In resistant cells cultivated in the absence or presence of vincristine, the RR layer is either reduced or absent. Consistently, resistant cells were found to be less sensitive to Concanavalin A (ConA). Moreover, differences in the amount and spectrum of glycoproteins interacting with ConA-Sepharose were demonstrated between sensitive and resistant cells. Finally, the content of glycogen in resistant cells is lower than in sensitive cells. All the above facts indicate that multidrug resistance of L1210/VCR cells mediated predominantly by drug efflux activity of Pgp is accompanied by a considerable depression of oligo- and/or polysaccharides biosynthesis.  相似文献   

11.
The human multidrug resistance protein, or P-glycoprotein (Pgp), exhibits a high-capacity drug-dependent ATP hydrolytic activity that is a direct reflection of its drug transport capability. This activity is readily measured in membranes isolated from cultured insect cells infected with a baculovirus carrying the humanmdrl cDNA. The drug-stimulated ATPase activity is a useful alternative to conventional screening systems for identifying high-affinity drug substrates of the Pgp with potential clinical value as chemosensitizers for tumor cells that have become drug resistant. Using this assay system, a variety of drugs have been directly shown to interact with the Pgp. Many of the drugs stimulate the Pgp ATPase activity, but certain drugs bind tightly to the drug-binding site of the Pgp without eliciting ATP hydrolysis. Either class of drugs may be useful as chemosensitizing agents. The baculovirus/insect cell Pgp ATPase assay system may also facilitate future studies of the molecular structure and mechanism of the Pgp.  相似文献   

12.
Localization of the drug transporter P-glycoprotein (Pgp) to the plasma membrane is thought to be the only contributor of Pgp-mediated multidrug resistance (MDR). However, very little work has focused on the contribution of Pgp expressed in intracellular organelles to drug resistance. This investigation describes an additional mechanism for understanding how lysosomal Pgp contributes to MDR. These studies were performed using Pgp-expressing MDR cells and their non-resistant counterparts. Using confocal microscopy and lysosomal fractionation, we demonstrated that intracellular Pgp was localized to LAMP2-stained lysosomes. In Pgp-expressing cells, the Pgp substrate doxorubicin (DOX) became sequestered in LAMP2-stained lysosomes, but this was not observed in non-Pgp-expressing cells. Moreover, lysosomal Pgp was demonstrated to be functional because DOX accumulation in this organelle was prevented upon incubation with the established Pgp inhibitors valspodar or elacridar or by silencing Pgp expression with siRNA. Importantly, to elicit drug resistance via lysosomes, the cytotoxic chemotherapeutics (e.g. DOX, daunorubicin, or vinblastine) were required to be Pgp substrates and also ionized at lysosomal pH (pH 5), resulting in them being sequestered and trapped in lysosomes. This property was demonstrated using lysosomotropic weak bases (NH4Cl, chloroquine, or methylamine) that increased lysosomal pH and sensitized only Pgp-expressing cells to such cytotoxic drugs. Consequently, a lysosomal Pgp-mediated mechanism of MDR was not found for non-ionizable Pgp substrates (e.g. colchicine or paclitaxel) or ionizable non-Pgp substrates (e.g. cisplatin or carboplatin). Together, these studies reveal a new mechanism where Pgp-mediated lysosomal sequestration of chemotherapeutics leads to MDR that is amenable to therapeutic exploitation.  相似文献   

13.
Multidrug resistance (MDR) is a major obstacle in cancer chemotherapy. The present study aims to investigate whether the ribozyme could reverse MDR in breast carcinoma cells. In this study, two GUC sites (GUC106 and GUC135) on the surface of mdr1 mRNA were selected according to the secondary structure of the 5'-region of mdrl mRNA. The ribozyme gene RZ106 and RZ135 complementary to two sides bases of the target GUC were synthesized and cloned into the plasmid pEGFP -C1 which has EGFP (Enhanced Green Fluorescence Protein) as report gene and Kan/Neo as selection gene. After transfection with the recombinant plasmid and selected by G418, the stable cell clones were produced and used for detection. The alteration of mdr1 mRNA and P-gp in the treated cells was detected by RT-PCR, flow cytometry and Rh123 retention. The reversal efficiency of the drug resistance for adriamycin was determined by MTT assay. The results showed that after transfection with RZ106 and RZ135, the amount of the mdr1 mRNA and P-gp decreased significantly and the efflux function of P-gp was inhibited accordingly. Nine-fold and 16-fold reduction of resistance for adriamycin was observed in the two groups of treated cells. These results suggested that both ribozymes can reverse the MDR phenotype by inhibiting the expression of mdr1 mRNA and P-gp, and the RZ135 showed the better cleavage efficiency. The ribozyme strategy designed according the secondary structure of the target RNA could be a useful therapy for reversal of MDR.  相似文献   

14.
Over-expression of P-glycoprotein (Pgp), a protein responsible for multidrug resistance (MDR), is responsible for general resistance to anti-epileptic drugs (AEDs). We explored the potential use of gene therapy with adenoviral-delivered RNA interference against mdr1b as a method to sensitize refractory epilepsy to AEDs. We constructed replication-deficient recombinant adenovirus Adeno-mdr1b1 carrying short hairpin RNA (shRNA) targeting against mdr1b, and successfully infected the established Sprague–Dawley rat astrocyte model of Coriaria Lactone-induced Pgp over-expression. The expression levels of mdr1b and Pgp and the Rhodamine123 efflux ratio in trial groups were significantly lower than that of blank control (P < 0.05) during the first 7 days post-infection, with the most inhibition at 48 h. The results suggest that knockdown of MDR using adenovirus not only avoided the toxicity and low rate of plasmid nucleofection, but also overcame its poor efficiency of mdr1b silencing. More importantly, this study may pave the way for a promising approach to remedy refractory epilepsy.  相似文献   

15.
P-Glycoprotein (Pgp) expression in cell lines derived from tumors arising from cells which normally express Pgp can be increased by sodium butyrate and other differentiating agents. Although the Pgp level increased 25-fold after sodium butyrate treatment in SW620 human colon carcinoma cells, the intracellular accumulation of vinblastine, adriamycin, and actinomycin D increased rather than decreased. In contrast, colchicine showed the expected decrease in accumulation, as a result of increased efflux. Likewise, treatment of a Pgp-expressing multidrug-resistant SW620 subline with sodium butyrate resulted in active interference with Pgp function. This effect was partially reversed by phorbol esters with a resulting decrease in the accumulation of vinblastine, adriamycin, and actinomycin D. Sodium butyrate, while increasing Pgp levels, inhibited the phosphorylation of Pgp. Time course studies revealed a tight relationship between decreased Pgp phosphorylation and increased vinblastine accumulation after sodium butyrate treatment. Either treatment with phorbol esters or withdrawal of sodium butyrate increased Pgp phosphorylation while decreasing vinblastine accumulation. These studies suggest that the specificity of Pgp transport can be modulated by phosphorylation and that vinblastine, adriamycin, or actinomycin D transport, but not that of colchicine, is diminished after dephosphorylation by sodium butyrate.  相似文献   

16.
The development of multiple drug resistance (MDR) is a significant problem in epilepsy therapy. The primary factor responsible for antiepileptic drug (AEDs) resistance is the over-expression of the MDR gene product, P-glycoprotein (Pgp). To model a therapeutic approach for decreasing drug resistance in patients with intractable epilepsy, we established a model of coriaria lactone (CL) induced Pgp overexpression in rat astrocytes and administered a recombinant adenovirus Ad5-EGFP-shRNA1-U6 to deliver an anti-mdr1b short hairpin RNA (shRNA) for 5 days. We then investigated the gene-silencing effects of shRNA by quantitative real-time RT-PCR, Western-blot, and Rho123 accumulation assay. The results showed that over-expression of mdr1b and Pgp was successfully suppressed, the ability of intracellular Rho123 retention was increased, and drug efflux was decreased in the adenovirus treated astrocytes. In conclusion, MDR was reversed in rat astrocyte model. These findings may be favorable for developing new therapeutic strategies for treating intractable epilepsy.  相似文献   

17.
We selected for study an anthracycline-resistant mutant from the archaebacteria Haloferax volcanii. This resistance was reversed by a Ca2+-channel antagonist, nifedipine (NDP). This resistance and its reversal by NDP suggest P-glycoprotein (Pgp) to be responsible for maintaining an anticancer drug concentration below the cytotoxic level. Using rhodamine 123 (RH123) as a substrate for Pgp, we then examined whether the resistance to anthracyclines in this bacteria might involve a Pgp-like anthracycline efflux pump. RH123 accumulation by the bacteria was determined with flow cytometry. A steady-state RH123 accumulation by the resistant cells revealed approx. one-fifteenth of that by the wild-type cells, which could be remarkably enhanced by NDP. The other modulators of Pgp, diltiazem and verapamil, also enhanced RH123 accumulation in resistant cells. The uncoupler FCCP completely restored RH123 accumulation in resistant cells to the wild-type cell level. RH123 unidirectional efflux from resistant cells after its preloading revealed much greater than that from wild-type cells, which was remarkably inhibited by FCCP. These confirmed that RH123 low accumulation involves its active efflux mechanism. Taken together, the present study indicated that lower evolutionary archaebacteria might also express a Pgp-like protein very similar to mammalian Pgp.  相似文献   

18.
Given the widespread use of formulations combining anthelmintics which are possible P-glycoprotein interfering agents, the understanding of drug interactions with efflux ABC transporters is of concern for improving anthelmintic control. We determined the ability of 14 anthelmintics from different classes to interact with abcb1a (mdr1a, P-glycoprotein, Pgp) by following the intracellular accumulation of rhodamine 123 (Rho 123), a fluorescent Pgp substrate, in LLC-PK1 cells overexpressing Pgp. The cytotoxicity of the compounds that are able to interfere with Pgp activity was evaluated in cells overexpressing Pgp and compared with parental cells using the MTS viability assay. Among all the anthelmintics used, ivermectin (IVM), triclabendazole (TCZ), triclabendazole sulfoxide (TCZ-SO), closantel (CLOS) and rafoxanide (RAF) increased the intracellular Rho 123 in Pgp overexpressing cells, while triclabendazole sulfone, albendazole, mebendazole, oxfendazole, thiabendazole, nitroxynil, levamisole, praziquantel and clorsulon failed to have any effect. The concentration needed to reach the maximal Rho 123 accumulation (Emax) was obtained with 10 μM for IVM, 80 μM for CLOS, 40 μM for TCZ and TCZ-SO, and 80 μM for RAF. We showed that for these five drugs parental cell line was more sensitive to drug toxicity compared with Pgp recombinant cell line.Such in vitro approach constitutes a powerful tool to predict Pgp–drug interactions when formulations combining several anthelmintics are administered and may contribute to the required optimization of efficacy of anthelmintics.  相似文献   

19.
We selected for study an anthracycline-resistant mutant from the archaebacteria Haloferax volcanii. This resistance was reversed by a Ca(2+)-channel antagonist, nifedipine (NDP). This resistance and its reversal by NDP suggest P-glycoprotein (Pgp) to be responsible for maintaining an anticancer drug concentration below the cytotoxic level. Using rhodamine 123 (RH123) as a substrate for Pgp, we then examined whether the resistance to anthracyclines in this bacteria might involve a Pgp-like anthracycline efflux pump. RH123 accumulation by the bacteria was determined with flow cytometry. A steady-state RH123 accumulation by the resistant cells revealed approx. one-fifteenth of that by the wild-type cells, which could be remarkably enhanced by NDP. The other modulators of Pgp, diltiazem and verapamil, also enhanced RH123 accumulation in resistant cells. The uncoupler FCCP completely restored RH123 accumulation in resistant cells to the wild-type cell level. RH123 unidirectional efflux from resistant cells after its preloading revealed much greater than that from wild-type cells, which was remarkably inhibited by FCCP. These confirmed that RH123 low accumulation involves its active efflux mechanism. Taken together, the present study indicated that lower evolutionary archaebacteria might also express a Pgp-like protein very similar to mammalian Pgp.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号