首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
In vitro Ca++ activates gelsolin to sever F-actin and form a gelsolin-actin (GA) complex at the+end of F-actin that is not dissociated by ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) but is separated by EGTA+PIP/PIP2. The gelsolin blocks the+end on the actin filament, but the-end of the filament can still initiate actin polymerization. In thrombin activated platelets, evidence suggests that severing of F-actin by gelsolin increases GA complex, creates one-end actin nucleus and one cryptic+end actin nucleus per cut, and then dissociates to yield free+ends to nucleate rapid actin assembly. We examined the role of F-actin severing in creation and regulation of nuclei and polymerization in polymorphonuclear neutrophils (PMNs). At 2-s intervals after formyl peptide (FMLP) activation of endotoxin free (ETF) PMNs, change in GA complex was correlated with change in+end actin nuclei,-end actin nuclei, and F-actin content. GA complex was quantitated by electrophoretograms of proteins absorbed by antigelsolin from cells lysed in 10 mM EGTA,+end actin nuclei as cytochalasin (CD) sensitive and-end actin nuclei as CD insensitive increases in G-pyrenyl actin polymerization rates induced by the same PMNs, and F-actin content by NBDphallacidin binding to fixed cells. Thirty three percent of gelsolin was in GA complex in basal ETF PMNs; from 2-6 s, GA complexes dissociate (low = 15% at 10 s) and sequentially+end nuclei and F-actin content and then-end nuclei increase to a maximum at 10 s. At > s GA complex increase toward basal and + end nuclei and F-actin content returned toward basal. These kinetic data show gelsolin regulates availability of + end nuclei and actin polymerization in FMLP. However, absence of an initial increase in GA complex or - end nucleating activity shows FMLP activation does not cause gelsolin to sever F- or to bind G-actin to create cryptic + end nuclei in PMNs; the results suggest the + nucleus formation is gelsolin independent.  相似文献   

2.
Numerous studies have described the F-actin cytoskeleton; however, little information relevant to C-actin is available. The actin pools of bovine aortic endothelial cells were examined using in situ and in vitro conditions and fluorescent probes for G-(deoxyribonuclease I.0.3 μM) or F-actin (phalloidin, 0.2 μM). Cells in situ displayed a diffuse G-actin distribution, while F-actin was concentrated in the cell periphery and in fine stress fibers that traversed some cells. Cells of subconfluent or just confluent cultures demonstrated intense fluorescence, with many F-actin stress fibers. Postconfluent cultures resembled the condition in situ; peripheral F-actin was prominent, traversing actin stress fibers were greatly reduced and fluorescent intensity was diminished. Postconfluency had little influence on G-actin. with only an enhancement in the intensity of G-actin punctate fluorescence. When post-confluent cultures were incubated with cytochalasin D (15 min; 10--4 M), F-actin networks were disrupted and actin punctate and diffuse fluorescence increased. G-actin fluorescence was not altered by the incubation. Although its unstructured nature may account for the minor changes observed, the stability of the G-actin pool in the presence of notable F-actin modulations suggested that filamentous actin was the key constituent involved in these actin cytoskeletal alterations. A separate finding illustrated that the concomitant use of actin probes with image enhancement and fluorescent microscopy could reveal simultaneously the G- and F-actin pools within the same cell.  相似文献   

3.
Salmonella force their way into nonphagocytic host intestinal cells to initiate infection. Uptake is triggered by delivery into the target cell of bacterial effector proteins that stimulate cytoskeletal rearrangements and membrane ruffling. The Salmonella invasion protein A (SipA) effector is an actin binding protein that enhances uptake efficiency by promoting actin polymerization. SipA-bound actin filaments (F-actin) are also resistant to artificial disassembly in vitro. Using biochemical assays of actin dynamics and actin-based motility models, we demonstrate that SipA directly arrests cellular mechanisms of actin turnover. SipA inhibits ADF/cofilin-directed depolymerization both by preventing binding of ADF and cofilin and by displacing them from F-actin. SipA also protects F-actin from gelsolin-directed severing and reanneals gelsolin-severed F-actin fragments. These data suggest that SipA focuses host cytoskeletal reorganization by locally inhibiting both ADF/cofilin- and gelsolin-directed actin disassembly, while simultaneously stimulating pathogen-induced actin polymerization.  相似文献   

4.
A quantitative study of the role of F-actin in producing neutrophil shape   总被引:3,自引:0,他引:3  
Neutrophils change shape from round to polar and sequentially polymerize/depolymerize actin following chemotactic peptide activation in suspension. To study the relationship between changes in F-actin content and shape we altered the kinetics/extent of actin polymerization and depolymerization with tBOC peptide, cytochalasin D (CD), and low-dose FMLP, and determined the effect of these alterations on the temporal sequence of changes in neutrophil shape. F-actin was measured by FACS analysis of NBDphallacidin-stained cells and expressed as relative fluorescent intensity (RFI) compared to control (RFI = 1.00). Shape was determined by scanning electron microscopy. FMLP causes serial polymerization/depolymerization of actin (RFI = 1.00 +/- 0.04, 1.60 +/- 0.21, 1.10 +/- 0.18, and 1.05 +/- 0.14) associated with four distinct shapes (round-smooth, round-ruffled, blebbed, and polar) noted at 0, 30, 90, 300 sec respectively. Since blebbed and polar shapes appear concurrent with depolymerization and following polymerization, we determined whether depolymerization is required for polarization of cells. The kinetics of depolymerization were: (1) accelerated by tBOC addition at 45 sec, and (2) slowed by high concentrations of FMLP (greater than 10-7M) (300 sec RFI = 1.46). Neither change altered the time course of shape change. To determine whether duration of actin polymerization defines shape, polymerization was halted by addition of tBOC at 5, 10, 20, 30 sec after FMLP to block actin polymerization and shape was monitored at 300 sec. TBOC added 5-20 sec after FMLP limited neutrophil shape change to the blebbed form, while tBOC addition 30 sec following FMLP resulted in a polar shape at 300 sec. To determine whether the extent of actin polymerization affects the shape change sequence, polymerization was limited by (1) inhibition of polymerization with CD, (2) exposure of cells to low concentrations of FMLP (less than 10-9 M), and (3) interruption of polymerization with tBOC. Actin polymerization to RFI less than 1.35-fold basal results in blebbed shape; polymerization greater than 1.35-fold basal yields polar shape. The data show: (1) the human neutrophil demonstrates intermediate shapes when activated by chemotactic peptide, (2) depolymerization of F-actin does not determine shape, and (3) blebbed shape appears when actin polymerizes for greater than 5 sec; polar shape with polymerization greater than or equal to 30 sec to RFI greater than 1.35-fold basal. The data suggest actin polymerization is required for, and extent of polymerization determines, the shape of human neutrophils.  相似文献   

5.
The rate of filamentous actin (F-actin) depolymerization is proportional to the number of filaments depolarizing and changes in the rate are proportional to changes in filament number. To determine the number and length of actin filaments in polymorphonuclear leukocytes and the change in filament number and length that occurs during the increase in F-actin upon chemoattractant stimulation, the time course of cellular F-actin depolymerization in lysates of control and peptide-stimulated cells was examined. F-actin was quantified by the TRITC-labeled phalloidin staining of pelletable actin. Lysis in 1.2 M KCl and 10 microM DNase I minimized the effects of F-actin binding proteins and G-actin, respectively, on the kinetics of depolymerization. To determine filament number and length from a depolymerization time course, depolymerization kinetics must be limited by the actin monomer dissociation rate. Comparison of time courses of depolymerization in the presence (pointed ends free) or absence (barbed and pointed ends free) of cytochalasin suggested depolymerization occurred from both ends of the filament and that monomer dissociation was rate limiting. Control cells had 1.7 +/- 0.4 x 10(5) filaments with an average length of 0.29 +/- 0.09 microns. Chemo-attractant stimulation for 90 s at room temperature with 0.02 microM N-formylnorleucylleucylphenylalanine caused a twofold increase in F-actin and about a two-fold increase in the total number of actin filaments to 4.0 +/- 0.5 x 10(5) filaments with an average length of 0.27 +/- 0.07 microns. In both cases, most (approximately 80%) of the filaments were quite short (less than or equal to 0.18 micron). The length distributions of actin filaments in stimulated and control cells were similar.  相似文献   

6.
Fluorescent derivatives of phalloidin are widely used to measure filamentous actin (F-actin) levels and to stabilize F-actin. We have characterized the kinetics and affinity of binding of tetramethylrhodaminyl (TRITC)-phalloidin to rabbit skeletal muscle F-actin and to F-actin in lysates of rabbit polymorphonuclear leukocytes (PMNs). We have defined conditions where TRITC-phalloidin can be used to inhibit F-actin depolymerization and to quantify F-actin without prior fixation. By equilibrium measurements, the affinity of TRITC-phalloidin binding to rabbit skeletal muscle F-actin (pyrene labeled) or to PMN lysate F-actin was 1-4 x 10(-7) M. In both cases, the stoichiometry of binding was approximately 1:1. Kinetic measurements of TRITC-phalloidin binding to PMN lysate F-actin resulted in an association rate constant of 420 +/- 120 M-1 sec-1 and a dissociation rate constant of 8.3 +/- 0.9 x 10(-5) sec-1. The affinity calculated from the kinetic measurements (2 +/- 1 x 10(-7) M) agreed well with that obtained by equilibrium measurements. The rate with which 0.6 microM TRITC-phalloidin inhibited 0.1 microM pyrenyl F-actin depolymerization (90% inhibition in 10 sec) was much faster than the rate of binding to pyrenyl F-actin (less than 1% bound in 10 sec), suggesting that phalloidin binds to filament ends more rapidly than to the rest of the filament. We show that TRITC-phalloidin can be used to measure F-actin levels in cell lysates when G-actin is also present (i.e., in cell lysates at high concentrations) if DNase I is included to prevent phalloidin-induced polymerization.  相似文献   

7.
alpha-Actinin is an evolutionarily conserved actin filament crosslinking protein with functions in both muscle and non-muscle cells. In non-muscle cells, interactions between alpha-actinin and its many binding partners regulate cell adhesion and motility. In Drosophila, one non-muscle and two muscle-specific alpha-actinin isoforms are produced by alternative splicing of a single gene. In wild-type ovaries, alpha-actinin is ubiquitously expressed. The non-muscle alpha-actinin mutant Actn(Delta233), which is viable and fertile, lacks alpha-actinin expression in ovarian germline cells, while somatic follicle cells express alpha-actinin at late oogenesis. Here we show that this latter population of alpha-actinin, termed FC-alpha-actinin, is absent from the dorsoanterior follicle cells, and we present evidence that this is the result of a negative regulation by combined Epidermal growth factor receptor (EGFR) and Decapentaplegic signalling. Furthermore, EGFR signalling increased the F-actin bundling activity of ectopically expressed muscle-specific alpha-actinin. We also describe a novel morphogenetic event in the follicle cells that occurs during egg elongation. This event involves a transient repolarisation of the basal actin fibres and the assembly of a posterior beta-integrin-dependent adhesion site accumulating alpha-actinin and Enabled. Clonal analysis using Actn null alleles demonstrated that although alpha-actinin was not necessary for actin fibre formation or maintenance, the cytoskeletal remodelling was perturbed, and Enabled did not localise in the posterior adhesion site. Nevertheless, epithelial morphogenesis proceeded normally. This work provides the first evidence that alpha-actinin is involved in the organisation of the cytoskeleton in a non-muscle tissue in Drosophila.  相似文献   

8.
State of actin in gastric parietal cells   总被引:1,自引:0,他引:1  
Remodeling of theapical membrane-cytoskeleton has been suggested to occur when gastricparietal cells are stimulated to secrete HCl. The present experimentsassayed the relative amounts of F-actin and G-actin in gastric glandsand parietal cells, as well as the changes in the state of actin onstimulation. Glands and cells were treated with a Nonidet P-40extraction buffer for separation into detergent-soluble (supernatant)and detergent-insoluble (pellet) pools. Two actin assays were used toquantitate actin: the deoxyribonuclease I binding assay to measureG-actin and F-actin content in the two pools and a simple Western blotassay to quantitate the relative amounts of actin in the pools.Functional secretory responsiveness was assayed by aminopyrineaccumulation. About 5% of the total parietal cell protein is actin,with about 90% of the actin present as F-actin. Stimulation of acidsecretion resulted in no measurable change in the relative amounts ofG-actin and cytoskeletal F-actin. Treatment of gastric glands withcytochalasin D inhibited acid secretion and resulted in a decrease inF-actin and an increase in G-actin. No inhibition of parietal cellsecretion was observed when phalloidin was used to stabilize actinfilaments. These data are consistent with the hypothesis thatmicrofilamentous actin is essential for membrane recruitment underlyingparietal cell secretion. Although the experiments do not eliminate theimportance of rapid exchange between G- and F-actin for the secretoryprocess, the parietal cell maintains actin in a highly polymerizedstate, and no measurable changes in the steady-state ratio of G-actin to F-actin are associated with stimulation to secrete acid.

  相似文献   

9.
The contribution of brush border cytoskeletal proteins (actin, villin, fimbrin, and brush border myosin-1) to organization of the cytoskeletal network underlying apical plications of oxynticopeptic cells was examined by immunohistochemical techniques in frozen sections of gastric mucosa from the bullfrog, Rana catesbeiana. Apical localization of F-actin with phalloidin in oxynticopeptic cells inhibited with cimetidine revealed small, punctate domains within the apical cytoplasm that were consistent with the presence of short microvilli revealed by electron microscopy. Localization of F-actin in cells stimulated with forskolin was limited to a wide continuous band of cytoplasm corresponding to the location of numerous long surface folds. Inhibition of protein synthesis with cycloheximide did not prevent acid secretion or formation of actin filaments within surface folds in stimulated oxynticopeptic cells, suggesting that the formation of filaments does not require actin synthesis. Staining of gastric mucosae with fluorescent DNase-1 demonstrated that oxynticopeptic cells possess an unusually large pool of non-filamentous actin. Taken together, these results suggest that actin-filament formation in stimulated cells occurs by polymerization of an existing pool of non-filamentous actin. Localization of antibodies specific for villin and fimbrin revealed that these proteins were present within intestinal absorptive cells and gastric surface and neck cells but were not present within inhibited or stimulated oxynticopeptic cells. Brush border myosin-1, present in intestinal absorptive cells, was not present in gastric epithelium. Thus, we propose that actin-containing projections in oxynticopeptic cells are not organized like intestinal microvilli and that filament formation occurs after stimulation by modulating intracellular pools of filamentous and non-filamentous actin.  相似文献   

10.
Cofilin, a key regulator of actin filament dynamics, binds to G- and F-actin and promotes actin filament turnover by stimulating depolymerization and severance of actin filaments. In this study, cytochalasin D (CytoD), a widely used inhibitor of actin dynamics, was found to act as an inhibitor of the G-actin-cofilin interaction by binding to G-actin. CytoD also inhibited the binding of cofilin to F-actin and decreased the rate of both actin polymerization and depolymerization in living cells. CytoD altered cellular F-actin organization but did not induce net actin polymerization or depolymerization. These results suggest that CytoD inhibits actin filament dynamics in cells via multiple mechanisms, including the well-known barbed-end capping mechanism and as shown in this study, the inhibition of G- and F-actin binding to cofilin.  相似文献   

11.
Doublecortin association with actin filaments is regulated by neurabin II   总被引:1,自引:0,他引:1  
Mutations in the human Doublecortin (DCX) gene cause X-linked lissencephaly, a neuronal migration disorder affecting the neocortex and characterized by mental retardation and epilepsy. Because dynamic cellular asymmetries such as those seen in cell migration critically depend on a cooperation between the microtubule and actin cytoskeletal filament systems, we investigated whether Dcx, a microtubule-associated protein, is engaged in cytoskeletal cross-talk. We now demonstrate that Dcx co-sediments with actin filaments (F-actin), and using light and electron microscopy and spin down assays, we show that Dcx induces bundling and cross-linking of microtubules and F-actin in vitro. It has recently been shown that binding of Dcx to microtubules is negatively regulated by phosphorylation of the Dcx at Ser-47 or Ser-297. Although the phosphomimetic green fluorescent protein (GFP)-Dcx(S47E) transfected into COS-7 cells had a reduced affinity for microtubules, we found that pseudophosphorylation was not sufficient to cause Dcx to bind to F-actin. When cells were co-transfected with neurabin II, a protein that binds F-actin as well as Dcx, GFP-Dcx and to an even greater extent GFP-Dcx(S47E) became predominantly associated with filamentous actin. Thus Dcx phosphorylation and neurabin II combinatorially enhance Dcx binding to F-actin. Our findings raise the possibility that Dcx acts as a molecular link between microtubule and actin cytoskeletal filaments that is regulated by phosphorylation and neurabin II.  相似文献   

12.
The cytoskeleton participates in many aspects of transporter protein regulation. In this study, by using yeast two-hybrid screening, we identified the cytoskeletal protein actin as a binding partner with the UT-A1 urea transporter. This suggests that actin plays a role in regulating UT-A1 activity. Actin specifically binds to the carboxyl terminus of UT-A1. A serial mutation study shows that actin binding to UT-A1's carboxyl terminus was abolished when serine 918 was mutated to alanine. In polarized UT-A1-MDCK cells, cortical filamentous (F) actin colocalizes with UT-A1 at the apical membrane and the subapical cytoplasm. In the cell surface, both actin and UT-A1 are distributed in the lipid raft microdomains. Disruption of the F-actin cytoskeleton by latrunculin B resulted in UT-A1 accumulation in the cell membrane as measured by biotinylation. This effect was mainly due to inhibition of UT-A1 endocytosis in both clathrin and caveolin-mediated endocytic pathways. In contrast, actin depolymerization facilitated forskolin-stimulated UT-A1 trafficking to the cell surface. Functionally, depolymerization of actin by latrunculin B significantly increased UT-A1 urea transport activity in an oocyte expression system. Our study shows that cortical F-actin not only serves as a structural protein, but directly interacts with UT-A1 and plays an important role in controlling UT-A1 cell surface expression by affecting both endocytosis and trafficking, therefore regulating UT-A1 bioactivity.  相似文献   

13.
Formyl-met-leu-phe (fMLP) induces actin assembly in neutrophils; the resultant increase in F-actin content correlates with an increase in the rate of cellular locomotion at fMLP concentrations less than or equal to 10(-8) M (Howard, T.H., and W.H. Meyer, 1984, J. Cell Biol., 98:1265-1271). We studied the time course of change in F-actin content, F-actin distribution, and cell shape after fMLP stimulation. F-actin content was quantified by fluorescence activated cell sorter analysis of nitrobenzoxadiazole-phallacidin-stained cells (Howard, T.H., 1982, J. Cell Biol., 95(2, Pt. 2:327a). F-actin distribution and cell shape were determined by analysis of fluorescence photomicrographs of nitrobenzoxadiazole-phallacidin-stained cells. After fMLP stimulation at 25 degrees C, there is a rapid actin polymerization that is maximal (up to 2.0 times the control level) at 45 s; subsequently, the F-actin depolymerizes to an intermediate F-actin content 5-10 min after stimulation. The depolymerization of F-actin reflects a true decrease in F-actin content since the quantity of probe extractable from cells also decreases between 45 s and 10 min. The rate of actin polymerization (3.8 +/- 0.3-4.4 +/- 0.6% increase in F-actin/s) is the same for 10(-10) - 10(-6) M fMLP and the polymerization is inhibited by cytochalasin D. The initial rate of F-actin depolymerization (6.0 +/- 1.0-30 +/- 5% decrease in F-actin/min) is inversely proportional to fMLP dose. The F-actin content of stimulated cells at 45 s and 10 min is greater than control levels and varies directly with fMLP dose. F-actin distribution and cell shape also vary as a function of time after stimulation. 45 s after stimulation the cells are rounded and F-actin is diffusely distributed; 10 min after stimulation the cell is polarized and F-actin is focally distributed. These results indicate that actin polymerization and depolymerization follow fMLP stimulation in sequence, the rate of depolymerization and the maximum and steady state F-actin content but not the rate of polymerization are fMLP dose dependent, and concurrent with F-actin depolymerization, F-actin is redistributed and the cell changes shape.  相似文献   

14.
Though many factors have been identified which modulate prostacyclin (PGI2) synthesis, there is little information on cellular mechanisms whereby endothelial cells (EC) regulate their basal eicosanoid metabolism. Using substrates of various adhesive capacities, bovine and porcine aortic EC shape and cytoskeletal F-actin arrangement could be modulated. Staining with rhodamine-phalloidin (R-P) permitted analysis of F-actin arrangement, while differences in cell shape were determined by measurement of cell perimeter surface area (CPSA). Spectrophotoflurometric measurements were used to quantitate the R-P binding capacity of the cultures. Cultures of reduced CPSA (225.2 +/- 13.5 mu2) generated the highest levels of basal PGl2 (6.14 +/- 0.51 pg/ug cell protein); had a diffuse arrangement of F-actin and an increased binding capacity for R-P (463.55 +/- 50.58 nmoles/ug cell protein). Cultures of enlarged CPSA (1399.3 +/- 148.3 mu2), with many actin cables and a significantly reduced (p less than 0.001) R-P binding capacity (74.941 +/- 11.79 nmoles/ug of cell protein) produced significantly smaller (p less than 0.001) basal quantities of PGl2 (1.33 +/- 0.14 pg/ug cell protein). Similarly, arachidonic acid stimulation of cultures of reduced CPSA resulted in an increased synthesis of PGl2 when compared to stimulated cultures of enlarged cells. These findings suggest a role for cell shape and the cytoskeleton in the mechanism controlling PGl2 production and indicate that alteration of the arrangement of F-actin may be of importance in regulation of EC eicosanoid metabolism.  相似文献   

15.
A new model for the interaction of dystrophin with F-actin   总被引:10,自引:1,他引:9       下载免费PDF全文
The F-actin binding and cross-linking properties of skeletal muscle dystrophin-glycoprotein complex were examined using high and low speed cosedimentation assays, microcapillary falling ball viscometry, and electron microscopy. Dystrophin-glycoprotein complex binding to F-actin saturated near 0.042 +/- 0.005 mol/ mol, which corresponds to one dystrophin per 24 actin monomers. Dystrophin-glycoprotein complex bound to F-actin with an average apparent Kd for dystrophin of 0.5 microM. These results demonstrate that native, full-length dystrophin in the glycoprotein complex binds F-actin with some properties similar to those measured for several members of the actin cross-linking super- family of proteins. However, we failed to observe dystrophin- glycoprotein complex-induced cross-linking of F-actin by three different methods, each positively controlled with alpha-actinin. Furthermore, high speed cosedimentation analysis of dystrophin- glycoprotein complex digested with calpain revealed a novel F-actin binding site located near the middle of the dystrophin rod domain. Recombinant dystrophin fragments corresponding to the novel actin binding site and the first 246 amino acids of dystrophin both bound F- actin but with significantly lower affinity and higher capacity than was observed with purified dystrophin-glycoprotein complex. Finally, dystrophin-glycoprotein complex was observed to significantly slow the depolymerization of F-actin, Suggesting that dystrophin may lie along side an actin filament through interaction with multiple actin monomers. These data suggest that although dystrophin is most closely related to the actin cross-linking superfamily based on sequence homology, dystrophin binds F-actin in a manner more analogous to actin side-binding proteins.  相似文献   

16.
Mouse BC3H1 myogenic cells and a bi-functional chemical cross linking reagent were utilized to investigate the polymerization of newly-synthesized vascular smooth muscle (α-actin) and non-muscle (β- and γ-actin) actin monomers into native F-actin filament structures during myogenesis. Two actin dimer species were identified by SDS-PAGE analysis of phenylenebismaleimide-cross linked fractions of BC3H1 myoblasts and myocytes. P-dimer was derived from the F-actin-enriched, detergent-insoluble cytoskeleton. Pulse-chase analysis revealed that D-dimer initially was associated with the cytoskeleton but then accumulated in the soluble fraction of lysed muscle cells that contained a non-filamentous or aggregated actin pool. Immunoblot analysis indicated that non-muscle and smooth muscle actins were capable of forming both types of dimer. However, induction of smooth muscle α-actin in developing myoblasts coincided with an increase in D-dimer level which may facilitate actin stress fiber assembly. Smooth muscle α-actin was rapidly utilized in differentiating myoblasts to assemble extraction-resistant F-actin filaments in the cytoskeleton whereas non-muscle β- and γ-actin filaments were more readily dissociated from the cytoskeleton by an extraction buffer containing ATP and EGTA. The data indicate that cytoarchitectural remodeling in developing BC3H1 myogenic cells is accompanied by selective actin isoform utilization that effectively segregates multiple isoactins into different sub-cellular domains and/or supramolecular entities. J. Cell. Biochem. 67:514–527, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
The actin cytoskeleton is the primary polymer system within cells responsible for regulating cellular stiffness. While various actin binding proteins regulate the organization and dynamics of the actin cytoskeleton, the proteins responsible for regulating the mechanical properties of cells are still not fully understood. In the present study, we have addressed the significance of the actin associated protein, tropomyosin (Tpm), in influencing the mechanical properties of cells. Tpms belong to a multi-gene family that form a co-polymer with actin filaments and differentially regulate actin filament stability, function and organization. Tpm isoform expression is highly regulated and together with the ability to sort to specific intracellular sites, result in the generation of distinct Tpm isoform-containing actin filament populations. Nanomechanical measurements conducted with an Atomic Force Microscope using indentation in Peak Force Tapping in indentation/ramping mode, demonstrated that Tpm impacts on cell stiffness and the observed effect occurred in a Tpm isoform-specific manner. Quantitative analysis of the cellular filamentous actin (F-actin) pool conducted both biochemically and with the use of a linear detection algorithm to evaluate actin structures revealed that an altered F-actin pool does not absolutely predict changes in cell stiffness. Inhibition of non-muscle myosin II revealed that intracellular tension generated by myosin II is required for the observed increase in cell stiffness. Lastly, we show that the observed increase in cell stiffness is partially recapitulated in vivo as detected in epididymal fat pads isolated from a Tpm3.1 transgenic mouse line. Together these data are consistent with a role for Tpm in regulating cell stiffness via the generation of specific populations of Tpm isoform-containing actin filaments.  相似文献   

18.
Tropomyosin is present in virtually all eucaryotic cells, where it functions to modulate actin-myosin interaction and to stabilize actin filament structure. In striated muscle, tropomyosin regulates contractility by sterically blocking myosin-binding sites on actin in the relaxed state. On activation, tropomyosin moves away from these sites in two steps, one induced by Ca(2+) binding to troponin and a second by the binding of myosin to actin. In smooth muscle and non-muscle cells, where troponin is absent, the precise role and structural dynamics of tropomyosin on actin are poorly understood. Here, the location of tropomyosin on F-actin filaments free of troponin and other actin-binding proteins was determined to better understand the structural basis of its functioning in muscle and non-muscle cells. Using electron microscopy and three-dimensional image reconstruction, the association of a diverse set of wild-type and mutant actin and tropomyosin isoforms, from both muscle and non-muscle sources, was investigated. Tropomyosin position on actin appeared to be defined by two sets of binding interactions and tropomyosin localized on either the inner or the outer domain of actin, depending on the specific actin or tropomyosin isoform examined. Since these equilibrium positions depended on minor amino acid sequence differences among isoforms, we conclude that the energy barrier between thin filament states is small. Our results imply that, in striated muscles, troponin and myosin serve to stabilize tropomyosin in inhibitory and activating states, respectively. In addition, they are consistent with tropomyosin-dependent cooperative switching on and off of actomyosin-based motility. Finally, the locations of tropomyosin that we have determined suggest the possibility of significant competition between tropomyosin and other cellular actin-binding proteins. Based on these results, we present a general framework for tropomyosin modulation of motility and cytoskeletal modelling.  相似文献   

19.
Rho SB  Chun T  Lee SH  Park K  Lee JH 《FEBS letters》2004,557(1-3):57-63
Thymosin beta-10 (TB10) is a small G-actin binding protein that induces depolymerization of intracellular F-actin pools by sequestering actin monomers. Previously, we demonstrated that overexpression of TB10 in ovarian tumor cells increased the rate of cell death. As an initial step to define molecular mechanism of TB10-dependent apoptotic process in ovarian tumor cells, we searched a human ovary cDNA library for a novel TB10 binding protein using a yeast two-hybrid system. The selected protein was human E-tropomodulin (E-Tmod), another component of the actin binding proteins. Subsequently, two interacting protein components were determined quantitatively. Results showed that the full-length TB10 is required to bind with E-Tmod, and the TB10 binding site on E-Tmod partially overlaps with the actin binding site on E-Tmod. Moreover, introduction of E-Tmod cDNA into a tumor cell line reversed TB10 mediated apoptosis and restored actin architectures. These results may suggest that TB10 regulates apoptotic homeostasis by not only just binding to actin but also competing or blocking the protein complex formation of E-Tmod with actin.  相似文献   

20.
Gibbon BC  Kovar DR  Staiger CJ 《The Plant cell》1999,11(12):2349-2363
The actin cytoskeleton is absolutely required for pollen germination and tube growth, but little is known about the regulation of actin polymer concentrations or dynamics in pollen. Here, we report that latrunculin B (LATB), a potent inhibitor of actin polymerization, had effects on pollen that were distinct from those of cytochalasin D. The equilibrium dissociation constant measured for LATB binding to maize pollen actin was determined to be 74 nM. This high affinity for pollen actin suggested that treatment of pollen with LATB would have marked effects on actin function. Indeed, LATB inhibited maize pollen germination half-maximally at 50 nM, yet it blocked pollen tube growth at one-tenth of that concentration. Low concentrations of LATB also caused partial disruption of the actin cytoskeleton in germinated maize pollen, as visualized by light microscopy and fluorescent-phalloidin staining. The amounts of filamentous actin (F-actin) in pollen were quantified by measuring phalloidin binding sites, a sensitive assay that had not been used previously for plant cells. The amount of F-actin in maize pollen increased slightly upon germination, whereas the total actin protein level did not change. LATB treatment caused a dose-dependent depolymerization of F-actin in populations of maize pollen grains and tubes. Moreover, the same concentrations of LATB caused similar depolymerization in pollen grains before germination and in pollen tubes. These data indicate that the increased sensitivity of pollen tube growth to LATB was not due to general destabilization of the actin cytoskeleton or to decreases in F-actin amounts after germination. We postulate that germination is less sensitive to LATB than tube extension because the presence of a small population of LATB-sensitive actin filaments is critical for maintenance of tip growth but not for germination of pollen, or because germination is less sensitive to partial depolymerization of the actin cytoskeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号