首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies have identified cell-associated proteins that are membrane anchored by glycosyl-inositol-phospholipid structures but the biologic implications of this mode of membrane attachment are incompletely understood. Among proteins anchored in this way is the decay-accelerating factor (DAF), a complement (C) regulatory factor that functions on blood cell surfaces to prevent autologous C attack. As one approach to investigate the functional consequences of glycosyl-inositol-phospholipid-anchoring of DAF in T lymphocytes, the effects of crosslinking surface DAF molecules were compared to those of crosslinking conventionally by anchored cluster of differentiation (CD) proteins. Upon incubation with anti-DAF mAb and anti-murine IgG, DAF re-distributed to a pole of the cell with a t1/2 at 37 degrees C of 4.4 min as compared to t1/2 of 3.5 to 7 min for CD3, CD4, and CD8. Re-distribution of DAF occurred independently of CD2, CD3, CD4, or CD8. Anti-DAF immunoprecipitates of membrane extracts of cells chemically cross-linked with dithiobis(succinimidylpropionate) contained only monomeric DAF. Immunofluorescent staining demonstrated clustered actin, tubulin, and vimentin beneath the capped DAF protein. Pre-treatment of cells with colchicine or 8-azidoadenosine 3',5'-cyclic phosphate, but not lumicolchicine, resulted in reduction of the t1/2 for DAF to 1 to 2.6 min. Conversely, treatment of cells with cytochalasins B or D completely blocked DAF capping. The results indicate that, upon cross-linking, glycosyl-inositol-phospholipid-anchored DAF molecules undergo capping similar to conventionally anchored CD molecules and that DAF capping is associated with cytoskeletal reorganization.  相似文献   

2.
Previous studies have shown that freshly isolated CD16+ NK cells are deficient in the expression of decay-accelerating factor (DAF), or CD55, a membrane regulator of C3 activation. In this study we investigated the significance, for NK cell-mediated lysis, of DAF expression on the target and effector cells. The effect of DAF expression on the susceptibility of NK cell targets was investigated by several means: first, DAF- cell lines were cloned from K562; second, the cloned DAF- cells were reconstituted with exogenous purified DAF; and third, anti-DAF F(ab')2 was used to block DAF function on the DAF+ K562 cells. Consistently, the presence of DAF in the target cell membrane, either naturally occurring or experimentally incorporated, afforded the target cell protection against lysis, and this protection could be blocked with anti-DAF. Similarly, targets for antibody-dependent cell-mediated cytotoxicity with exogenous DAF incorporated in their plasma membrane became less sensitive to antibody-dependent cell-mediated cytotoxicity by NK cells compared with the same target cells without incorporated DAF in their membranes. DAF incorporated in the plasma membranes of the effector NK cells made the NK cells less effective at killing K562 targets. The known function of DAF is to regulate C3 activation, and we were able to demonstrate that the isolated NK cell is capable of releasing C3. It is also possible that the participation of DAF in NK cell function represents a new, noncomplement-dependent function for DAF.  相似文献   

3.
Decay-accelerating factor (DAF) is a 75,000 m.w. membrane protein that inhibits autologous complement C3 activation at the cell surface. One-color direct immunofluorescence with anti-DAF antibody and cytofluorographic analysis indicates that normal human monocytes and granulocytes are uniform in expression of DAF, whereas 23% of peripheral blood lymphocytes are DAF deficient. A two-color indirect immunofluorescence method, used to define the phenotype(s) of the DAF-deficient lymphocytes, was less efficient in DAF detection and led to overestimation of the fraction of deficient cells. Nonetheless, the difference between DAF expression by natural killer cells, identified by the CD16 and HNK-1 antigens, was marked. DAF deficiency was intermediate in cells expressing the CD2, CD3, CD4, or CD8 markers. On the basis of the phenotypic definition of natural killer cells and their contribution to the lymphocyte population, it is concluded that a uniform deficiency of DAF on natural killer cells accounts for about one-half of the DAF-deficient lymphocytes in peripheral blood of normal donors. The finding of a complete DAF deficiency in the lymphocytes from a patient with a lymphoproliferative disorder with the predominant proliferation of CD2+, CD3+, CD8+, HNK-1+ large granular lymphocytes gives additional support for the association of DAF-deficiency with natural killer cells.  相似文献   

4.
Damage to autologous tissue by complement is limited by several widely distributed membrane-associated glycoproteins which restrict the action of the complement in homologous species. These include decay accelerating factor (DAF), membrane cofactor protein (MCP) and 20 kDa homologous restriction factor (HRF20,CD59). Using immunohistochemical techniques, we examined the localization of these proteins in the centra] nervous system (CNS) and peripheral nervous system (PNS) using non-neurological human nervous tissue since some complement components have been demonstrated to be synthesized in the CNS. There was no evidence of parenchymal staining by anti-DAF or anti-MCP antibodies in either type of tissue except for the staining of the endothelium in capillaries. On the other hand, anti-HRF20 antibody clearly stained myelinated axons in the CNS as well as Schwann cells in the PNS. In addition, we detected positive staining by anti-DAF antibody in the PNS of a Paroxysmal nocturnal hemoglobinuria (PNH) patient who is genetically deficient in HRF20.  相似文献   

5.
 To avoid destruction by complement, normal and malignant cells express membrane glycoproteins that restrict complement activity. These include decay-accelerating factor (DAF, CD55), membrane cofactor protein (MCP, CD46) and protectin (CD59), which are all expressed on colonic adenocarcinoma cells in situ. In this study we have characterised the C3/C5 convertase regulators DAF and MCP on the human colonic adenocarcinoma cell line HT29. DAF was found to be a glycosyl-phosphatidylinositol-anchored 70-kDa glycoprotein. Blocking experiments with F(ab′)2 fragments of the anti-DAF monoclonal antibody BRIC 216 showed that DAF modulates the degree of C3 deposition and mediates resistance to complement-mediated killing of the cells. The expression and function of DAF were enhanced by tumour necrosis factor α (TNFα) and interleukin-1β (IL-1β). Cells incubated with interferon γ (IFNγ) did not alter their DAF expression. Two MCP forms were expressed, with molecular masses of approximately 58 kDa and 68 kDa, the lower form predominating. MCP expression was up-regulated by IL-1β, but not by TNFα or IFNγ. Expression of DAF and MCP promotes resistance of colonic adenocarcinoma cells to complement-mediated damage, and represents a possible mechanism of tumour escape. Received: 18 July 1995 / Accepted: 4 January 1996  相似文献   

6.
It is becoming increasingly apparent that many viruses employ multiple receptor molecules in their cell entry mechanisms. The human enterovirus coxsackievirus A21 (CAV21) has been reported to bind to the N-terminal domain of intercellular adhesion molecule 1 (ICAM-1) and undergo limited replication in ICAM-1-expressing murine L cells. In this study, we show that in addition to binding to ICAM-1, CAV21 binds to the first short consensus repeat (SCR) of decay-accelerating factor (DAF). Dual antibody blockade using both anti-ICAM-1 (domain 1) and anti-DAF (SCR1) monoclonal antibodies (MAbs) is required to completely abolish binding and replication of high-titered CAV21. However, the binding of CAV21 to DAF, unlike that to ICAM-1, does not initiate a productive cell infection. The capacity of an anti-DAF (SCR3) MAb to block CAV21 infection but not binding, coupled with immunoprecipitation data from chemical cross-linking studies, indicates that DAF and ICAM-1 are closely associated on the cell surface. It is therefore suggested that DAF may function as a low-affinity attachment receptor either enhancing viral presentation or providing a viral sequestration site for subsequent high-affinity binding to ICAM-1.  相似文献   

7.
Decay-accelerating factor (DAF, CD55) is a GPI-anchored membrane protein that regulates complement activation on autologous cells. In addition to protecting host tissues from complement attack, DAF has been shown to inhibit CD4+ T cell immunity in the setting of model Ag immunization. However, whether DAF regulates natural T cell immune response during pathogenic infection is not known. We describe in this study a striking regulatory effect of DAF on the CD8+ T cell response to lymphocytic choriomeningitis virus (LCMV) infection. Compared with wild-type mice, DAF knockout (Daf-1(-/-)) mice had markedly increased expansion in the spleen of total and viral Ag-specific CD8+ T cells after acute or chronic LCMV infection. Splenocytes from LCMV-infected Daf-1(-/-) mice also displayed significantly higher killing activity than cells from wild-type mice toward viral Ag-loaded target cells, and Daf-1(-/-) mice cleared LCMV more efficiently. Importantly, deletion of the complement protein C3 or the receptor for the anaphylatoxin C5a (C5aR) from Daf-1(-/-) mice reversed the enhanced CD8+ T cell immunity phenotype. These results demonstrate that DAF is an important regulator of CD8+ T cell immunity in viral infection and that it fulfills this role by acting as a complement inhibitor to prevent virus-triggered complement activation and C5aR signaling. This mode of action of DAF contrasts with that of CD59 in viral infection and suggests that GPI-anchored membrane complement inhibitors can regulate T cell immunity to viral infection via either a complement-dependent or -independent mechanism.  相似文献   

8.
Decay-accelerating factor (DAF or CD55) is a 70-kDa glycosyl-phosphatidylinositol (GPI)-anchored protein that protects cells from complement-mediated lysis by either preventing the formation of or dissociating C3 convertases. Cross-linking of DAF on human peripheral T cells by polyclonal antibodies has previously been reported to lead to lymphocyte proliferation. Two mAb, both mapping to the third short consensus repeat region of DAF, were able to trigger proliferation of human peripheral T cells. To determine the role of the GPI anchor in cell activation, we transfected EL-4 murine thymoma cells with cDNA encoding either DAF or a transmembrane form of DAF (DAF-TM). The DAF-transfected cells were able to transduce late activation events as evidenced by IL-2 production, whereas DAF-TM transfected cells were unable to do so. The GPI-anchored DAF was able to transduce early activation events leading to the tyrosine phosphorylation of a 40-kDa protein and several proteins in the 85-95 kDa range--an event absent in DAF-TM-transfected cells. Furthermore, anti-DAF immunoprecipitates of DAF-transfected cells contain tyrosine kinase activity leading to the phosphorylation of 40-, 56-60-, and 85-kDa proteins, whereas anti-DAF immunoprecipitates of DAF-TM-transfected cells did not have an associated kinase activity. Both p56lck and p59fyn were associated with DAF in DAF-transfected EL-4 cells. In HeLa cells transfected with fyn, DAF associated with p59fyn. This complex of DAF with src family protein tyrosine kinases requires the GPI anchor and suggests a pathway for signaling through GPI-anchored membrane proteins.  相似文献   

9.
The decay-accelerating factor (DAF) is a cell membrane glycoprotein that functions in the control of C activation. We studied the modulation of membrane DAF on polymorphonuclear cells (PMN) by using anti-DAF antibodies. Fluorescence-activated cell sorter analysis showed that DAF expression was reduced by 43 +/- 7% on resting or stimulated cells that were held at 37 degrees C for 30 min when compared with those kept on ice. Most of this reduction occurred within the first 15 min, and was followed by a gradual further decrease in surface DAF. PMN that were held at 37 degrees C for varying periods of time before DAF measurement had a gradual decrease suggestive of release of DAF from the PMN membrane or endocytosis. To examine the latter, PMN were reacted with anti-DAF at 0 degree C, followed by 125I-Fab'2 secondary antibodies at either 0 degree C or 37 degrees C, and subsequently treated with pronase. Thirty +/- 11% of the 125I remained bound to cells kept at 37 degrees C compared to 2% in those held at 0 degrees C. Internalization was further confirmed by electron microscopy. In PMN that were not exposed to pronase, 26 +/- 2% of the surface-associated 125I was released at 37 degrees C compared with 7% at 0 degrees C. Immunoprecipitation and SDS-PAGE of surface-labeled PMN showed that the temperature-dependent released DAF had a lower m.w. than membrane DAF. Immunofluorescent studies revealed that 37 degrees C mediated the redistribution of DAF from a homogeneous pattern into caps. These results show that under the conditions studied DAF is partially internalized and partially released from the PMN membrane to the fluid phase; the latter may contribute to the presence of DAF in body fluids.  相似文献   

10.
Decay-accelerating factor (DAF or CD55) and membrane cofactor protein (MCP or CD46) function intrinsically in the membranes of self cells to prevent activation of autologous complement on their surfaces. How these two regulatory proteins cooperate on self-cell surfaces to inhibit autologous complement attack is unknown. In this study, a GPI-anchored form of MCP was generated. The ability of this recombinant protein and that of naturally GPI-anchored DAF to incorporate into cell membranes then was exploited to examine the combined functions of DAF and MCP in regulating complement intermediates assembled from purified alternative pathway components on rabbit erythrocytes. Quantitative studies with complement-coated rabbit erythrocyte intermediates constituted with each protein individually or the two proteins together demonstrated that DAF and MCP synergize the actions of each other in preventing C3b deposition on the cell surface. Further analyses showed that MCP's ability to catalyze the factor I-mediated cleavage of cell-bound C3b is inhibited in the presence of factors B and D and is restored when DAF is incorporated into the cells. Thus, the activities of DAF and MCP, when present together, are greater than the sum of the two proteins individually, and DAF is required for MCP to catalyze the cleavage of cell-bound C3b in the presence of excess factors B and D. These data are relevant to xenotransplantation, pharmacological inhibition of complement in inflammatory diseases, and evasion of tumor cells from humoral immune responses.  相似文献   

11.
By differential-display-PCR a subclone of the SK-BR-3 cell line with high in vitro transendothelial invasiveness was identified to express increased levels of a new alternative splice variant of decay-accelerating factor (DAF). DAF seems to play an important role in some malignant tumours since on the one hand the expression of complement inhibitors on the surface of tumour cells prevents the accumulation of complement factors and in consequence cell lysis. On the other hand, DAF has been identified as a ligand for the CD97 surface receptor which induces cell migration. Immunofluorescence procedures, Western blot analyses, and cDNA clone sequencing were employed to confirm the expression of DAF restricted to invasive tumour cells. Using a radioactive RNA-in situ hybridisation on freshly frozen tissue microarrays and RT-PCR on native tumour tissue, the expression of alternative spliced DAF mRNA was demonstrated in invasive breast cancer. Due to the fact that it could thereby not be detected in normal mammary tissues, it has to be confirmed in larger studies that the DAF splice variant might be a specific tumour marker for invasive breast cancer.  相似文献   

12.
CD59 and membrane cofactor protein (MCP, CD46) are widely expressed cell surface glycoproteins that protect host cells from the effect of homologous complement attack. cDNAs encoding human CD59 and MCP cloned from Chinese human embryo were separately transfected into NIH/3T3 cells resulting in the expression of human CD59 and MCP protein on the cell surface. The functional properties of expressed proteins were studied. When the transfected cells were exposed to human serum as a source of complement and naturally occurring anti-mouse antibody, they were resistant to human complement-mediated cell killing. However, the cells remained sensitive to rabbit and guinea pig complement. Human CD59 and MCP can only protect NIH/3T3 cells from human complement-mediated lysis. These results demonstrated that complement inhibitory activity of these proteins is species-selective. The cDNAs of CD59 and MCP were also separately transfected into the endothelial cells (ECs) of the pigs transgenic for the human DAF gene to investigate a putative synergistic action. The ECs expressing both DAF and MCP proteins or both DAF and CD59 proteins exhibited more protection against cytolysis by human serum compared to the cells with only DAF expressed alone.  相似文献   

13.
Decay-accelerating factor (DAF) functions as cell attachment receptor for a wide range of human enteroviruses. The Kuykendall prototype strain of coxsackievirus A21 (CVA21) attaches to DAF but requires interactions with intercellular cell adhesion molecule 1 (ICAM-1) to infect cells. We show here that a bioselected variant of CVA21 (CVA21-DAFv) generated by multiple passages in DAF-expressing, ICAM-1-negative rhabdomyosarcoma (RD) cells acquired the capacity to induce rapid and complete lysis of ICAM-1-deficient cells while retaining the capacity to bind ICAM-1. CVA21-DAFv binding to DAF on RD cells mediated lytic infection and was inhibited by either antibody blockade with a specific anti-DAF SCR1 monoclonal antibody (MAb) or soluble human DAF. Despite being bioselected in RD cells, CVA21-DAFv was able to lytically infect an additional ICAM-1-negative cancer cell line via DAF interactions alone. The finding that radiolabeled CVA21-DAFv virions are less readily eluted from surface-expressed DAF than are parental CVA21 virions during a competitive epitope challenge by an anti-DAF SCR1 MAb suggests that interactions between CVA21-DAFv and DAF are of higher affinity than those of the parental strain. Nucleotide sequence analysis of the capsid-coding region of the CVA21-DAFv revealed the presence of two amino acid substitutions in capsid protein VP3 (R96H and E101A), possibly conferring the enhanced DAF-binding phenotype of CVA21-DAFv. These residues are predicted to be embedded at the interface of VP1, VP2, and VP3 and are postulated to enhance the affinity of DAF interaction occurring outside the capsid canyon. Taken together, the data clearly demonstrate an enhanced DAF-using phenotype and expanded receptor utilization of CVA21-DAFv compared to the parental strain, further highlighting that capsid interactions with DAF alone facilitate rapid multicycle lytic cell infection.  相似文献   

14.
Recombinant soluble complement inhibitors hold promise for the treatment of inflammatory disease and disease states associated with transplantation. Targeting complement inhibitors to the site of complement activation and disease may enhance their efficacy and safety. Data presented show that targeting of decay-accelerating factor (DAF, an inhibitor of complement activation) to a cell surface by means of antibody fragments is feasible and that cell-targeted DAF provides significantly enhanced protection from complement deposition and lysis compared with soluble untargeted DAF. An extracellular region of DAF was joined to an antibody combining site with specificity for the hapten dansyl, at the end of either C(H)1 or C(H)3 Ig regions. The recombinant IgG-DAF chimeric proteins retained antigen specificity and bound to dansylated Chinese hamster ovary cells. Both soluble C(H)1-DAF and C(H)3-DAF were effective at inhibiting complement-mediated lysis of untargeted Chinese hamster ovary cells at molar concentrations within the range reported by others for soluble DAF. However, when targeted to a dansyl-labeled cell membrane, C(H)1-DAF was significantly more potent at inhibiting complement deposition and complement-mediated lysis. Cell-bound C(H)1-DAF also provided cells with protection from complement lysis after removal of unbound C(H)1-DAF. Of further importance, the insertion of a nonfunctional protein domain of DAF (the N-terminal short consensus repeat) between C(H)1 and the functional DAF domain increased activity of the fusion protein. In contrast to C(H)1-DAF, C(H)3-DAF was not significantly better at protecting targeted versus untargeted cells from complement, indicating that a small targeting vehicle is preferable to a large one. We have previously shown that for effective functioning of soluble complement inhibitor CD59, binding of CD59 to the cell surface close to the site of complement activation is required. Significantly, such a constraint did not apply for effective DAF function.  相似文献   

15.
Decay-accelerating factor (DAF, CD55) is a glycophosphatidyl inositol-anchored glycoprotein that regulates the activity of C3 and C5 convertases. In addition to understanding the mechanism of complement inhibition by DAF through structural studies, there is also an interest in the possible therapeutic potential of the molecule. In this report we describe the cloning, expression in Escherichia coli, isolation and membrane-targeting modification of the four short consensus repeat domains of soluble human DAF with an additional C-terminal cysteine residue to permit site-specific modification. The purified refolded recombinant protein was active against both classical and alternative pathway assays of complement activation and had similar biological activity to soluble human DAF expressed in Pichia pastoris. Modification with a membrane-localizing peptide restored cell binding and gave a large increase in antihemolytic potency. These data suggested that the recombinant DAF was correctly folded and suitable for structural studies as well as being the basis for a DAF-derived therapeutic. Crystals of the E. coli-derived protein were obtained and diffracted to 2.2 A, thus permitting the first detailed X-ray crystallography studies on a functionally active human complement regulator protein with direct therapeutic potential.  相似文献   

16.
Decay-accelerating factor (DAF) is a cell surface regulator that accelerates the dissociation of C3/C5 convertases and thereby prevents the amplification of complement activation on self cells. In the context of transplantation, DAF has been thought to primarily regulate antibody-mediated allograft injury, which is in part serum complement-dependent. Based on our previously delineated link between DAF and CD4 T cell responses, we evaluated the effects of donor Daf1 (the murine homolog of human DAF) deficiency on CD8 T cell-mediated cardiac allograft rejection. MHC-disparate Daf1(-/-) allografts were rejected with accelerated kinetics compared with wild-type grafts. The accelerated rejection predominantly tracked with DAF's absence on bone marrow-derived cells in the graft and required allograft production of C3. Transplantation of Daf1(-/-) hearts into wild-type allogeneic hosts augmented the strength of the anti-donor (direct pathway) T cell response, in part through complement-dependent proliferative and pro-survival effects on alloreactive CD8 T cells. The accelerated allograft rejection of Daf1(-/-) hearts occurred in recipients lacking anti-donor Abs. The results reveal that donor DAF expression, by controlling local complement activation on interacting T cell APC partners, regulates the strength of the direct alloreactive CD8(+) T cell response. The findings provide new insights into links between innate and adaptive immunity that could be exploited to limit T cell-mediated injury to an allograft following transplantation.  相似文献   

17.
NK cells play a critical role in the rejection of xenografts. In this study, we report on an investigation of the effect of complement regulatory protein, a decay accelerating factor (DAF: CD55), in particular, on NK cell-mediated cytolysis. Amelioration of human NK cell-mediated pig endothelial cell (PEC) and pig fibroblast cell lyses by various deletion mutants and point substitutions of DAF was tested, and compared with their complement regulatory function. Although wild-type DAF and the delta-short consensus repeat (SCR) 1-DAF showed clear inhibition of both complement-mediated and NK-mediated PEC lyses, delta-SCR2-DAF and delta-SCR3-DAF failed to suppress either process. However, delta-SCR4-DAF showed a clear complement regulatory effect, but had no effect on NK cells. Conversely, the point substitution of DAF (L147 x F148 to SS and KKK(125-127) to TTT) was half down-regulated in complement inhibitory function, but the inhibition of NK-mediated PEC lysis remained unchanged. Other complement regulatory proteins, such as the cell membrane-bound form factor H, fH-PI, and C1-inactivator, C1-INH-PI, and CD59 were also assessed, but no suppressive effect on NK cell-mediated PEC lysis was found. These data suggest, for DAF to function on NK cells, SCR2-4 is required but no relation to its complement regulatory function exists.  相似文献   

18.
Schistosoma mansoni parasites recovered from the blood stream were found to be nonactivators of the alternative complement pathway (ACP) when exposed to sera of homologous but not heterologous host species. Schistosomes could be converted into activators of the homologous ACP by treatment with phospholipase C. Antibodies to either human or guinea pig decay accelerating factor (DAF), a 70-kDa glycosylphosphatidylinositol anchored membrane glycoprotein which controls ACP activation on the mammalian cell plasma membrane, bound to the surface of immature schistosomes and immunoprecipitated a molecule of similar molecular mass from detergent extracts of surface iodinated parasites. Phospholipase C treatment drastically reduced the reactivity of the worms with the anti-DAF antibodies. These data suggest that schistosomes evade the ACP by inserting functional host DAF into their surfaces, possibly through adsorption of the molecule's lipophilic diacyglycerol membrane anchor moiety into the outer lipid bilayer of the parasite.  相似文献   

19.
The involvement of complement activation in various forms of cardiovascular disease renders it an important factor for disease progression and therapeutic intervention. The protective effect of resveratrol against cardiovascular disease via moderate red wine consumption has been established but the exact mechanisms are still under investigation. The current study utilised human coronary artery endothelial cells (HCAECs) in order to assess the extent to which the protective effect of resveratrol, at concentrations present in red wine, can be attributed to the upregulation of complement regulatory proteins through heme-oxygenase (HO)-1 induction. Resveratrol at concentrations as low as 0.001 μΜ increased HO-1 expression as well as membrane cofactor protein (MCP, CD46) and decay-accelerating factor (DAF, CD55) expression with no-effect on CD59. Silencing of HO-1 expression by HO-1 siRNAs abrogated both DAF and MCP protein expression with no effect on CD59. Resveratrol-mediated induction of DAF and MCP reduced C3b deposition following incubation of HCAECs with 10% normal human serum or normal rat serum as a source of complement. Incubation of HCAECs, with either a DAF blocking antibody or following transfection with HO-1 siRNAs, in the presence of 10% normal rat serum increased C3b deposition, indicating that both DAF and HO-1 are required for C3b reduction. These observations support a novel mechanism for the protective effect of resveratrol against cardiovascular disease and confirm the important role of HO-1 in the regulation of the complement cascade.  相似文献   

20.
A coxsackievirus B3 (CB3) isolate adapted to growth in RD cells shows an alteration in cell tropism as a result of its capacity to bind a 70-kDa cell surface molecule expressed on these cells. We now show that this molecule is the complement regulatory protein, decay-accelerating factor (DAF) (CD55). Anti-DAF antibodies prevented CB3 attachment to the cell surface. Radiolabeled CB3 adapted to growth in RD cells bound to CHO cells transfected with human DAF, whereas CB3 (strain Nancy), the parental strain, did not bind to DAF transfectants. These results indicate that growth of CB3 in RD cells selected for a virus strain that uses DAF for cell surface attachment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号