首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Glycopeptides were isolated by gel filtration on Sephadex G-25 and Sephadex G-50 from a Pronase digest of porcine thyroglobulin. 2. Isolated glycopeptides were separated into five main fractions on a column of DEAE-Sephadex A-25. Of these fractions I to III were further purified by SE-Sephadex C-25 or DEAE-Sephadex A-25 column chromatography. Several of the purified glycopeptides were homogeneous on paper electrophoresis. 3. Based on the chemical composition and molecular weight of the fractionated glycopeptides, two distinct types of heterosaccharide chain were demonstrated. 4. One type of the heterosaccharide unit consisted of four to eight residues of mannose and two residues of glucosamine and had a molecular weight of 1000-1700. The other type of unit contained sialic acid, fucose and galactose in addition to mannose and glucosamine and had a molecular weight of about 3600. 5. Mild alkaline treatment of the glycopeptide did not result in the destruction of threonine and serine. 2-Acetamido-1-N-(4-l-aspartyl)-2-deoxy-beta-d-glucopyranosylamine was isolated from partial acid hydrolysates.  相似文献   

2.
The enzymic degradation of ovalbumin and its glycopeptides   总被引:2,自引:1,他引:1       下载免费PDF全文
1. Ovalbumin glycopeptides, freed from all amino acids other than aspartic acid and a small proportion of leucine by repeated digestion with Pronase, were hydrolysed by 1-aspartamido-beta-N-acetylglucosamine amidohydrolase (glycoaspartamidase) to the corresponding oligosaccharides. The glycoaspartamidase did not attack ovalbumin itself. 2. Ovalbumin, with mannose/hexosamine ratio 5:4, lost 1.5moles of N-acetylglucosamine and more than 2moles of mannose after incubation with alpha-mannosidase and beta-N-acetylglucosaminidase respectively. 3. In ovalbumin glycopeptides with approximate mannose/hexosamine ratios 5:3 and 5:4, one and two N-acetylglucosamine residues respectively were accessible to the action of beta-N-acetylglucosaminidase. 4. A mixture of alpha-mannosidase and beta-N-acetylglucosaminidase, acting on an ovalbumin glycopeptide with mannose/hexosamine ratio 5:3.7, removed nearly 4moles of mannose and 1.5moles of N-acetylglucosamine. 5. alpha-Mannosidase removed about 1.5moles of mannose from the ovalbumin oligosaccharide with mannose/hexosamine ratio approx. 5:3. The subsequent action of beta-N-acetylglucosaminidase liberated less than 1mole of N-acetylglucosamine and made at least 1mole further of mannose accessible to alpha-mannosidase action. 6. It is concluded that the carbohydrate moiety of ovalbumin is linked through a glycosyl group to asparagine. In a molecule with mannose/hexosamine ratio 5:4, there are two beta-N-acetylglucosamine residues linked together in a terminal position, followed by alpha-mannose. There is also present a side chain containing two alpha-mannose units.  相似文献   

3.
Three glycopeptides have been isolated from the mucosal homogenates of the rat small intestine without using proteolysis. These glycopeptides appear to be localized exclusively in the membranes of the endoplasmic reticula. Although they have similar molecular weights of about 2550 and have similar amino acid compositions, they differ in the carbohydrate constituents. The major glycopeptide has 2 mol glucose per polypeptide chain while the two other glycopeptides contain 1 mol fucose, mannose and galactose with either 1 or 2 mol glucose. No hexosamine or sialic acid was detected in any of the glycopeptides. An unusual physical property was found associated with these glycopeptides. Below pH 6.5 they formed a precipitate which prevented them from diffusing through a dialysis membrane and allowed them to be rapidly purified following solubilization from the membrane. These glycopeptides appear to represent a new group of heretofore uncharacterized membrane constituents which may play a role in some function specific for the endoplasmic reticula.  相似文献   

4.
The glycoprotein which accounts for approximately 50% of the protein and all of the nonlipid carbohydrate of the cell envelope of Halobacterium salinarium (Mescher, M. F., Strominger, J. L., and Watson S. W. (1974) J. Bacteriol. 120, 945-954) has been purified and partially characterized. The glycoprotein has an apparent molecular weight of 200,000, is extremely acidic, and has a carbohydrate content of approximately 10 to 12%. The carbohydrate included neutral hexoses, amino sugar, and uronic acid. Information regarding the number, composition, and mode of attachment of the carbohydrate chains was obtained by isolation and examination of the glycopeptides derived from degradation of cell envelope protein with trypsin and pronase. Trypsin digestion resulted in two glycopeptides. One of these was large (approximately 55,000 daltons) and had most of the neutral hexose linked to it. The carbohydrate moieties consisted of di- and trisaccharides of glucosylgalactose and (uronic acid, glucose)-galactose attached via O-glycosidic linkages between galactose and threonine. The other tryptic glycopeptide had a relatively large heterosaccharide attached to it via an alkaline-stable linkage. The heterosaccharide contained 1 glucose, 8 to 9 galactose, 1 mannose, and 10 to 11 glucosamine residues, and approximately 6 residues of an unidentified amino augar. The alkaline stability of the linkage and the amino acid composition of glycopeptides resulting from Pronase digestion of the tryptic glycopeptide showed that the heterosaccharide was attached to an asparagine residue, presumably via an N-glycosylamine bond to the amide group. The intact glycoprotein has a single N-linked heterosaccharide, 22 to 24 O-linked disaccharides, and 12 to 14 O-linked trisaccharides per molecule. N- and O-glycosidic linkages are the most common carbohydrate-protein linkages in mammalian glycoproteins but, to our knowledge, this is the first report of either type of linkage in a prokaryotic cell envelope protein.  相似文献   

5.
The carbohydrate chains present in the tubular basement membrane of bovine kidney were studied. Digestion with collagenase followed with pronase resulted in a complete solubilization of the basement membrane. The different glycopeptides were purified by gel filtration and ion-exchange chromatography. Two kinds of carbohydrate chains could be characterized: oligosaccharides composed of glucosamine, mannose, galactose, fucose and sialic acid, and glucosylgalactose disaccharides. A very small portion of the oligosaccharide chains (ca. 4%) appeared to be free of sialic acid. The bulk of these chains contained sialic acid and fucose, although in small amounts. Only traces of galactosamine were found.  相似文献   

6.
The amino acid sequences near the glycosylation sites and the oligosaccharide structures have been determined for the lysosomal protease cathepsin D from porcine spleen. Cathepsin D light and heavy chains were separately digested with proteases and the glycopeptides were purified. A single sequence was constructed from the amino acid sequence of the light chain glycopeptides which is: Tyr-Asn-Ser-Gly-Lys-Ser-Ser-Thr-Tyr-Val-Lys-Asn(CH2O)-Gly-Thr-Thr-Phe. A single glycopeptide sequence was also obtained for the heavy chain: Lys-Gly-Ser-Leu-Asp-Tyr-His-Asn(CH2O)-Val-Thr-Arg-Lys-Ala-Tyr. The light chain sequence is homologous with the sequence of porcine pepsin from residues 56 to 71. The heavy chain sequence is homologous with the pepsin sequence from residues 176 to 189. Thus, the 2 oligosaccharide-linked asparagines in cathepsin D correspond to residues 67 and 183 in pepsin and other homologous aspartyl proteases. These positions are located on the surface of the crystal structures of aspartyl proteases. Five oligosaccharides linked to Asn-67 were separated and their structures determined with proton NMR. Four major oligosaccharides are structural variants from the high mannose-type having 3, 5, 6, and 7 mannoses, respectively. A minor structure contained a third GlcNAc. Three oligosaccharide structures were found linked to Asn-183. Two major oligosaccharides are of the high mannose-type each with 5 mannose residues. One of the two contains a fucose linked to a GlcNAc. A third, very minor oligosaccharide contains galactose.  相似文献   

7.
A particulate fraction from calf thyroid catalyzes the transfer of mannose from GDP-mannose to exogenous glycopeptides and methyl or aryl glycosides to form alpha-D-mannopyranosyl-D-mannose sequences. The transfer to the simple glycosides required a single nonreducing mannose residue linked to a lipophilic aglycone. Thus p-nitrophenyl-, 4-methylumbelliferyl-, phenyl- and methyl-alpha-D-mannopyranosides were effective acceptors while free mannose and glycosides of several other sugars were totally inactive. The Km value for methyl-alpha-D-mannopyranoside was 2.6 mM. Specificity for the anomeric configuration of the acceptor was glycosylated to the extent of 50% of the alpha anomer and mutual inhibition between these two acceptors was observed. Acetolysis or mild acid hydrolysis of the 14C-labeled products from the glycoside acceptors yielded the disaccharide, 2-O-alpha-D-mannopyranosyl-D-mannose, which represents the predominant linkage between mannose residues in the carbohydrate unit A of thyroglobulin. Glycopeptides with mannose sequences served as acceptors for the transfer reaction but only after dinitrophenylation of their peptide portion. The unit A glycopeptides of thyroglobulin with 10 mannose residues (Km equals 0.89 mM) were much better acceptors than glycopeptides containing the core portion of unit B which contains only three mannose components. Reduction in size of unit A glycopeptide acceptors by timed alpha-mannosidase treatment resulted in a progressive decrease in activity. Peptide-free unit A was inactive even after it was modified to carry dinitrophenyl groups on its glucosamine residues. GDP-mannose was the most effective glycosyl donor, with a Km value of 1.4 muM for methyl-alpha-D-mannopyranoside and 0.30 muM for dinitrophenyl unit A glycopeptides, although ADP- and UDP-mannose could substitute to the extent of 40 to 45%. The mannose transfer to the glycopeptides had a optimum of 6.3 while that to the simple glycopeptides was best at pH 7.0. Both types of transfer reactions required a divalent cation with manganese serving most effectively in that capacity. Mannoslytransferase activity for both groups of acceptors was found predominantly in particulate subcellular fractions. A number of aromatic compounds and reagents which are disruptive of membrane integrity caused loss of enzyme activity presumably by interfering with the function of the lipophilic substituents on the various acceptors.  相似文献   

8.
The membrane glycoproteins E1 and E2 of Semliki Forest virus are of about equal size but can be separated from each other by affinity chromatography on a concanavalin A-Sepharose column in the presence of sodium dodecyl sulfate. The E1 protein eluted like glycopeptides containing two peripheral sugar branches composed of N-acetylglucosamine, mannose, galactose and sialic acid. The E2 eluted like glycopeptides containing only N-acetylglucosamine and mannose.  相似文献   

9.
The structures of the predominant high mannose oligosaccharides present in a human IgM myeloma protein (Patient Wa) have been determined. The IgM glycopeptides, produced by pronase digestion, were fractionated on DEAE-cellulonalysis shows that glycopeptide I contains Asn, Pro, Ala, Thr, and His and glycopeptide II contains Asn, Val, and Ser, which are the same amino acids found in the sequences around Asn 402 and Asn 563 respectively, to which high mannose oligosaccharides are attached in IgM (Patient Ou) (Putnman, F.W., Florent, G., Paul, C., Shinoda, T., and Shimizu, A. (1973) Science 182, 287-290). The high mannose glycopeptides in IgM (Wa) exhibit heterogeneity in the oligosaccharide portion. Structural analysis of the major oligosaccharides indicates that the simplest structure is: (see article of journal). The larger oligosaccharides present have additional mannose residues linked alpha 1 yields 2 to terminal mannose residues in the above structure. Glycopeptide I contains primarily Man5 and Man6 species, while glycopeptide II contains Man6 and Man8 species. The two Man6 oligosaccharides have different branching patterns.  相似文献   

10.
Milk fat globule membrane was shown to contain sialic acid, all of which could be released without disruption of the fat globule. Sialoglycopeptides were cleaved from the surface of intact fat globules by Pronase and fractionated on Sephadex G-50. Further fractionation of the major sialoglycopeptide peak on DEAE-Sephadex gave two groups of sialoglycopeptides eluted with 0.1 M NaCl (Group A) and 0.5 M NaCl (Group B), respectively. Refractionation gave a major sialoglycopeptide from each of the two groups together with a total of three minor sialoglycopeptides. All five sialoglycopeptides eluted as single peaks using shallow salt gradients on DEAE-Sephadex and contained a hydrophilic peptide chain together with galactose, mannose, N-acetylgalactosamine, N-acetylglucosamine, and sialic acid. Glycopeptides of Group A but not Group B contained fucose. The major sialoglycopeptide of Group B released 35% of its hexose and hexosamine on treatment with alkaline borohydride leaving a sialoglycopeptide which had reduced serine and threonine and elevated alanine levels and in addition contained 2-aminobutyric acid. An oligosaccharide fraction containing N-acetylgalactosaminitol, galactose and sialic acid in a molar ratio of 1:1:2 was partially characterised from the clevage mixture. The major sialoglycopeptide of Group A had a more complex carbohydrate structure and showed no released carbohydrate on treatment with alkaline borohydride. The sialoglycopeptides of milk fat globule membrane show many similarities with those of erythrocyte membrane and have a potential use in comparative and structural studies.  相似文献   

11.
Sulfated glycopeptides were isolated from pronaisc and tryptic digests of egg shell membranes and hen oviduct. They were precipitated by cationic detergents and separated by preparative electrophoresis, after removal of small quantities of glucuronoglycosaminoglycans detected only in the oviduct (isthmus and magnum). The principal isolated sulfated glycopeptides were divided according to increasing electrophoretic mobilities into two groups A and B. The homogeneity of the purified glycopeptides was confirmed by gel filtration and polyacrylamide gel electrophoresis.Glycopeptides from pool preparation of tissue are analysed and carbohydrate and amino acids average values are estimated. Hexosamines (mainly N-acetylglucosamine), hexoses (galactose, glucose, mannose) and fucose were found in Glycopeptides A. The molar ratio of hexose/hexosamine was 0.4. N-Acetylneuraminic acid and sulfate were also present in Glycopeptides A. The molar ratio of sulfate/hexosamine ranged from 0.1 to 0.25. The Glycopeptides A composition indicated the presence of chains with many glycosyl groups and a few of amino acids residues. The carbohydrate components of Glycopeptides B from egg shell membranes and magnum were found to be hexosamines (N-acetylgalactosamine and N-acetylglucosamine in equimolar proportions), hexoses (galactose mainly and glucose), N-acetylneuraminic acid, and fucose. The molar ratio of hexose/hexosamine was 1. Sulfate was also present and the molar ratio of N-acetylneuraminic acid and sulfate to hexosamine was ranged from 0.8 to 1. The main amino acid residues in these glycopeptides were serine and threonine with destruction of these hydroxyamino acids during alkali treatment. Glycopeptides B probably consist of short carbohydrate chains, linked to the polypeptide through O-glycosidic bonds involving N-acetylgalactosamine and serine and threonine. Approximately 40% of the amino acid residues were linked to carbohydrate chains.Glycopeptides B from egg shell membranes magnum and egg white were very similar in their carbohydrate and amino acid composition and in their properties.Gylcopeptides A from egg shell membranes, isthmus and magnum showed similarities and divergences especially in the amino acid composition. These results suggest that magnum and isthmus in oviduct are both concerned with the synthesis of egg shell membrane glycoproteins.  相似文献   

12.
1. Eight gangliosides were purified from chloroform/methanol extracts of human kidneys by using modified Folch partition, dialysis, ethanol precipitation, silicic acid column chromatography and preparative thin-layer chromatography. 2. By thin-layer chromatographic behaviour and gas-liquid chromatographic determinations the main gangliosides in human kidney are N-acetylneuraminyllactosylceramide (74% of total) and di-N-acetylneuraminyllactosylceramide (19% of total). 3. Five hexosamine-containing fractions were isolated. Four of them were homogeneous on thin-layer chromatography, and one contained two gangliosides. By gas-liquid chromatography-mass spectrometry it was shown that two gangliosides (together 5% of total) contain glucosamine, and one (1% of total) contains galactosamine. The other of the glucosamine gangliosides contains fucose in addition to the usual sugars found in gangliosides. Of the two remaining hexosamine positive fractions (together 1% of total) one was homogeneous on thin-layer chromatography, the other contained two gangliosides. These two fractions contained both glucosamine and galactosamine. 4. The main long-chain base in all fractions was sphingosine.  相似文献   

13.
W A Emerson  S Kornfeld 《Biochemistry》1976,15(8):1697-1703
The major glycoprotein of the bovine erythrocyte membrane was purified by extraction of the ghosts with lithium 3,5-diiodosalicylate followed by phenol-water extraction and acidification. The glycoprotein contains 20% protein and 80% carbohydrate by weight and gives a single band on sodium dodecyl sulfate-polyacrylamide gels with an estimated molecular weight of 230000 daltons. The carbohydrate composition of the glycoprotein was determined to be (in residues relative to sialic acid): sialic acid, 1.0; fucose, less than 0.01; mannose, 0.1; galactose, 3.3; N-acetylgalactosamine, 0.9; and N-acetylglucosamine, 2.4. Pronase digestion of the isolated glycoprotein followed by Sephadex G-75 gel filtration resulted in the separation of a small pool of glycopeptides (pool III), which included all of the mannose-containing glycopeptides, from the bulk of the glycopeptide material which was in the void fractions of the column (pool I). Alkaline borohydride treatment released over 95% of the oligosaccharide units in pool I and approximately 30% of the oligosaccharide units in pool III. These oligosaccharides were isolated by gel filtration and ion-exchange chromatography. The oligosaccharides released from pool I had molecular weights of 1100-1400 daltons and contained sialic acid, galactose, and N-acetylglucosamine in molar ratios of 0.5-1:3:2 as well as a partial residue of N-acetylgalactosaminitol. The oligosaccharides released from pool III by alkali had molecular weights of 1300-1600 daltons and contained sialic acid, galactose, N-acetylglucosamine, N-acetylgalactosamine and N-ACETYLgalactosaminitol in molar ratios of 1-2:2:1:1:1. These data indicate that the majority of the oligosaccharide units of the bovine erythrocyte glycoprotein are linked O-glycosidically to the peptide backbone of the molecule.  相似文献   

14.
Milk fat globule membrane was shown to contain sialic acid, all of which could be released without disruption of the fat globule. Sialoglycopeptides were cleaved from the surface of intact fat globules by Pronase and fractionated on Sephadex G-50. Further fractionation of the major sialoglycopeptide peak on DEAE-Sephadex gave two groups of sialoglycopeptides eluted with 0.1 M NaCI (Group A) and 0.5 M NaCI (Group B), respectively. Refractionation gave a major sialoglycopeptide from each of the two groups together with a total of three minor sialoglycopeptides. All five sialoglycopeptides eluted as single peaks using shallow salt gradients on DEAE-Sephadex and contained a hydrophilic peptide chain together with galactose, mannose, N-acetylgalactosamine, N-acetylglucosamine, and sialic acid. Glycopeptides of Group A but not Group B contained fucose.The major sialoglycopeptide of Group B released 35 % of its hexose and hexosamine on treatment with alkaline borohydride leaving a sialoglycopeptide which had reduced serine and threonine and elevated alanine levels and in addition contained 2-aminobutyric acid. An oligosaccharide fraction containing N-acetylgalactosaminitol galactose and sialic acid in a molar ratio of 1 : 1 : 2 was partially characterised from the cleavage mixture.The major sialoglycopeptide of Group A had a more complex carbohydrate structure and showed no released carbohydrate on treatment with alkaline borohydride.The sialoglycopeptides of milk fat globule membrane show many similarities with those of erythrocyte membrane and have a potential use in comparative and structural studies.  相似文献   

15.
The sulfated glycopeptides in ovomucin, chalazae and yolk membrane were isolated from the proteolytic digests by gel filtration on a Bio-Gel P-100 column and DEAE-Sephadex A-25 column chromatography. These sulfated glycopeptides contained N-acetylhexosamine (23.3-26.8%), hexose (23.6-24.4%), sialic acid (11.2-18.0%), sulfate (5-12.1%) and peptide (17.5-18.1%). The sulfate contents of glycopeptides in chalazae and yolk membrane were much higher than those in ovomucin, about two times in a molar ratio to hexosamine. The sedimentation patterns of each sulfated glycopeptide were single and the sedimentation constants were around 3 S, suggesting that these sulfated glycopeptides were macromolecular components. Thus, the presence of highly sulfated glycoproteins was confirmed in chalazae and yolk membrane, which were different from those in ovomucin.  相似文献   

16.
The high mannose form of rat alpha 1-acid glycoprotein was isolated from rough membranes of rat liver using methods described previously. The high mannose glycopeptides were prepared by Pronase digestion, and oligosaccharides were isolated following digestion with endohexosaminidase-H. The structure of the carbohydrate chains of the high mannose glycopeptide and the oligosaccharides was examined by 300 MHz nuclear magnetic resonance spectroscopy. The glycopeptide contained a mixture of about equal amounts of AsnGlcNAc2Man9 and AsnGlcNAc2Man8. Analysis of the oligosaccharide fraction showed that it consisted of about equal amounts of GlcNAc Man9 and GlcNAc Man8; the GlcNAc Man8 fraction contained 85% of the "A" isomer (which was missing the terminal mannose from the middle antenna). The results suggested that mannose processing of alpha 1-acid glycoprotein in rough membranes of rat liver in vivo occurred only as far as the Man8 structure and that the "A" isomer was the main isomer formed.  相似文献   

17.
The labelled glycopeptides obtained by Pronase digestion of rat intestinal epithelial cell membranes were examined by gel filtration after injection of D-[2-3H]mannose and L-[6-3H]fucose. Three labelled fraction were eluted in the following order from Bio-Gel P-6, Fraction I, which was excluded from the gel, was labelled mostly with [3H]fucose and slightly with [3H]mannose. Fraction II contained "complex" asparagine-linked oligosaccharides since it was labelled with [3H]mannose and [3H]fucose, was stable to mild alkali treatment, and resistant to endo-beta-N-acetyl-glucosaminidase H. Fraction III contained "high-mannose" asparagine-linked oligosaccharides, which were labelled with [3H]mannose, but not with [3H]fucose; these were sensitive to endo-beta-N-acetylglucosaminidase H, and were adsorbed on concanavalin A-Sepharose and subsequently eluted with methyl alpha-D-mannopyranoside. The time course of incorporation of [3H]mannose into these glycopeptides in microsomal fractions showed that high-mannose oligosaccharides were precursors of complex oligosaccharides. The rate of this processing was faster in rapidly dividing crypt cells than in differentiated villus cells. The ratio of radioactively labelled complex oligosaccharides to high-mannose oligosaccharides, 3h after [3H]mannose injection, was greater in crypt than in villus-cell lateral membranes. Luminal membranes of both crypt and villus cells were greatly enriched in labelled complex oligosaccharides compared with the labelling in lateral-basal membranes. These studies show that intestinal epithelial cells are polarized with respect to the structure of the asparagine-linked oligosaccharides on their membrane glycoproteins. During differentiation of these cells quantitative differences in labelled membrane glycopeptides, But no major qualitative change, were observed.  相似文献   

18.
Twelve 14C-acetylated glycopeptides have been subjected to affinity chromatography on concanvalin A (Con A)--Sepharose at pH 7.5. The elution profiles could be classified into four distinct patterns. The first pattern showed no retardation of glycopeptide on the column and was elicited with a glycopeptide having three peripheral oligosaccharide chains: (abstract:see text). Such glycopeptides have only a single mannose residue capable of interacting with Con A--Sepharose; an interacting mannose residue is either an alpha-linked nonreducing terminal residue or an alpha-linked 2-O-substituted residue. The second type of profile showed a retarded elution of glycopeptide with buffer lacking methyl alpha-D-glucopyranoside (indicative of weak interaction with the column) and was given by glycopeptides with the structures: (abstract: see text) where R1 is either H or a sialyl residue. The third profile type showed tight binding of glycopeptide to Con A--Sepharose and elution as a sharp peak with 0.1 M methyl alpha-D-glucopyranoside; glycopeptides giving this pattern had the structures: (abstract: see text) where R2 is either H, glcNAc, Gal-beta 1,4-GlcNAc, or sialyl-Gal-beta 1,4-GlcNAc. These glycopeptides all have two interacting mannose residues, the mimimum required for binding to the column; one of these mannose residues must, however, be a terminal residue to obtain tight binding and sharp elution. The fourth profile type showed tight binding of glycopeptide to the column but elution with 0.1 M methyl alpha-D-glucopyranoside resulted in a broad peak indicating very tight binding; glycopeptides showing this behaviour had the structures: (abstract: see text) where R3 is either GlcNAc,Gal-beta 1,4-GlcNAc, or sialyl-Gal-beta 1,4-GlcNAc.Therefore it can be concluded that although a minimum of two interacting mannose residues is required for binding to Con A--Sepharose, the residues linked to these mannoses can either strengthen or weaken binding to the column.  相似文献   

19.
Mouse myeloma immunoglobulin IgM heavy chains were cleaved with cyanogen bromide into nine peptide fragments, four of which contain asparagine-linked glycosylation. Three glycopeptides contain a single site, including Asn 171, 402, and 563 in the intact heavy chain. Another glycopeptide contains two sites at Asn 332 and 364. The carbohydrate containing fragments were treated with Pronase and fractionated by elution through Bio-Gel P-6. The major glycopeptides from each site were analyzed by 500 MHz 1H-NMR and the carbohydrate compositions determined by gas-liquid chromatography. The oligosaccharide located at Asn 171 is a biantennary complex and is highly sialylated. The amount of sialic acid varies, and some oligosaccharides contain alpha 1,3-galactose linked to the terminal beta 1,4-galactose. The oligosaccharides at Asn 332, Asn 364, an Asn 402 are all triantennary and are nearly completely sialylated on two branches and partially sialylated on the triantennary branch linked beta 1,4 to the core mannose. The latter is sialylated about 40% of the time for all three glycosylation sites. The major oligosaccharide located at Asn 563 is of the high mannose type. The 1H-NMR determination of structures at Asn 563 suggests that the high mannose oligosaccharide contains only three mannose residues.  相似文献   

20.
The influenza viral hemagglutinin contains L-fucose linked alpha 1,6 to some of the innermost GlcNAc residues of the complex oligosaccharides. In order to determine what structural features of the oligosaccharide were required for fucosylation or where in the processing pathway fucosylation occurred, influenza virus-infected MDCK cells were incubated in the presence of various inhibitors of glycoprotein processing to stop trimming at different points. After several hours of incubation with the inhibitors, [5,6-3H]fucose and [1-14C]mannose were added to label the glycoproteins, and cells were incubated in inhibitor and isotope for about 40 h to produce mature virus. Glycopeptides were prepared from the viral and the cellular glycoproteins, and these glycopeptides were isolated by gel filtration on Bio-Gel P-4. The glycopeptides were then digested with endo-beta-N-acetylglucosaminidase H and rechromatographed on the Bio-Gel column. In the presence of castanospermine or 2,5-dihydroxymethyl-3,4-dihydroxypyrrolidine, both inhibitors of glucosidase I, most of the radioactive mannose was found in Glc3Man7-9GlcNAc structures, and these did not contain radioactive fucose. In the presence of deoxymannojirimycin, an inhibitor of mannosidase I, most of the [14C]mannose was in a Man9GlcNAc structure which was also not fucosylated. However, in the presence of swainsonine, an inhibitor of mannosidase II, the [14C]mannose was mostly in hybrid types of oligosaccharides, and these structures also contained radioactive fucose. Treatment of the hybrid structures with endoglucosaminidase H released the [3H]fucose as a small peptide (Fuc-GlcNAc-peptide), whereas the [14C]mannose remained with the oligosaccharide. The data support the conclusion that the addition of fucose linked alpha 1,6 to the asparagine-linked GlcNAc is dependent upon the presence of a beta 1,2-GlcNAc residue on the alpha 1,3-mannose branch of the core structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号