首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Sorsby fundus dystrophy (SFD) is an autosomal dominant macular degeneration of late onset. A key feature of the disease is the thickening of Bruch's membrane, an ECM structure located between the RPE and the choroid. SFD is caused by mutations in the gene encoding the ECM-associated tissue inhibitor of metalloproteases-3 (TIMP3). We have recently generated two Timp3 gene-targeted mouse lines, one deficient for the murine gene (Timp3-/-) and one carrying an SFD-related S156C mutation. Based on extracts and cell cultures derived from tissues of these animals we now evaluated TIMP3 functionality and its contribution to SFD. We show that the activity levels of TIMP3 target proteases including TACE, ADAMTS4/5 and aggrecan-cleaving MMPs are similar in Timp3S156/+ and Timp3S156C/S156C mice when compared to controls. In Timp3-/- mice, a significant enhancement of enzyme activity was observed for TACE but not for ADAMTS4/5 and MMPs indicating a compensatory effect of other inhibitors regulating the latter two groups of proteases. Fibrin bead assays show that angiogenesis in Timp3S156/+ and Timp3S156C/S156C mice is not altered whereas increased formation of capillary tubes was observed in Timp3-/- animals over controls. Rescue experiments using recombinant proteins demonstrate that the inhibitory activities of TIMP3 towards TACE and aggrecan-cleaving MMPs as well as the anti-angiogenic properties of TIMP3 are not impaired by SFD mutation S156C. We finally demonstrate that wild-type and S156C-TIMP3 proteins block the binding of VEGF to its receptor VEGFR2 to a similar extent. Taken together, this study shows that S156C-TIMP3 retains its known functional properties suggesting that causes other than an imbalance in protease or angiogenic activities represent the primary molecular defect underlying SFD.  相似文献   

2.
Sorsby’s fundus dystrophy (SFD) is an autosomal dominant macular dystrophy which is developed usually in the third or fourth decade of life, and is characterized by central visual loss and nyctalopia due to fundus changes of exudative or atrophic macular lesions. Its functional prognosis is usually poor because of disciform macular scars and peripheral chorioretinal atrophies. To date, five different mutations in the tissue inhibitor of the metallo-proteinases-3 (TIMP3) gene have been identified in families of a wide geographic origin, all of which are missense mutations that cause replacement by cysteine of conserved amino acids in the C-terminus of exon 5 of TIMP3. We have studied two Japanese families with SFD, the first report from the Eastern world, and identified a novel 3’ splice site mutation in the TIMP3 gene, namely a single base insertion at the intron 4/exon 5 junction which converts the consensus sequence CAG to CAAG in the splice acceptor site. In addition, our patients displayed a distinctive clinical expression in that they developed macular dystrophies at an approximately 30-year later age of onset and preserved functional vision until later life with essentially uninvolved peripheral retina. The present findings may provide some insight into the genotype–phenotype relationship in SFD. Received: 27 March 1998 / Accepted: 2 May 1998  相似文献   

3.
Circadian clock function depends on the tightly regulated exclusion or presence of clock proteins within the nucleus. A newly induced long-period timeless mutant, tim(blind), encodes a constitutively hypophosphorylated TIM protein. The mutant protein is not properly degraded by light, and tim(blind) flies show abnormal behavioral responses to light pulses. This is probably caused by impaired nuclear accumulation of TIM(BLIND) protein, which we observed in brain pacemaker neurons and photoreceptor cells of the compound eye. tim(blind) encodes two closely spaced amino acid changes compared to the wild-type TIM protein; one of them is within a putative nuclear export signal of TIM. Under constant conditions, tim(blind) flies exhibit 26-hr free-running locomotor rhythms, which are not correlated with a period lengthening of eclosion rhythms and period-luciferase reporter-gene oscillations. Therefore it seems possible that TIM--in addition to its well-established role as core clock factor--functions as a clock output factor, involved in determining the period length of adult locomotor rhythms.  相似文献   

4.
The TIMP family of matrix metalloproteinase inhibitors consists of four members, of which TIMP-1, -2 and -4 are secreted, freely diffusible proteins, whereas TIMP-3 is ECM-associated. Mutations in the TIMP3 gene have been linked to Sorsby's fundus dystrophy (SFD), an autosomal dominant inherited retinal degenerative disease that leads to blindness. The SFD mutations characterized result in introduction of an unpaired cysteine residue in the C-terminal domain of TIMP-3. We have expressed four SFD mutant TIMP-3 proteins in baby hamster kidney (BHK) cells and evaluated their characteristics alongside wild-type TIMP-3. Analysis of the mutant proteins (Ser156Cys, Gly167Cys, Tyr168Cys and Ser181Cys) by SDS-PAGE and reverse zymography revealed that each of the mutants retained gelatinase A and gelatinase B inhibitory activity, and were localized to the ECM. Association rate constants for Ser156Cys TIMP-3 with gelatinase-A, gelatinase-B, stromelysin-1 and collagenase-3 were only moderately reduced compared to wild-type TIMP-3. However, all of the mutants displayed aberrant protein-protein interactions, resulting in the presence of additional proteins or complexes in ECM preparations. Two of the mutants (Ser156Cys and Ser181Cys) showed a marked propensity to form multiple higher molecular-weight complexes that retained TIMP activity on reverse zymography. Expression of the SFD mutant TIMP-3 (and to a lesser extent, wild-type TIMP-3) proteins in BHK cells conferred increased cell adhesiveness to the ECM. Our findings indicate that the pathogenesis of Sorsby's fundus dystrophy cannot be attributed to a failure to localize SFD TIMP-3 proteins to the ECM or defects in MMP inhibition, but may involve the formation of aberrant TIMP-3-containing protein complexes and altered cell adhesion.  相似文献   

5.
6.
A naturally occurring point mutant of human apolipoprotein A-I (apoA-I), V156E, which is associated with extremely low plasma apoA-I and high density lipoprotein (HDL) levels, and coronary artery disease (Huang, W., Sasaki, J., Matsunaga, A., Nanimatsu, H., Moriyama, K., Han, H. Kugi, M., Koga, T., Yamaguchi, K., and Arakawa, K. (1998) Arterioscler. Throm. Vasc. Biol. 18, 389-396), was produced in an Escherichia coli expression system. The purified recombinant proapoA-I V156E mutant was examined in its structural and functional properties, both, in the lipid-free and lipid-bound states. In the lipid-free form the mutant protein exhibited small changes in conformation, but was more stable, and quite resistant to self-association, compared with control apoA-I. The V156E mutant was able to interact with phospholipid (PL) at high PL:protein ratios (95:1, mol/mol), but was inefficient in forming reconstituted HDL (rHDL) complexes at lower PL:protein ratios (40:1). In the lipid-bound, rHDL state, the mutant protein was somewhat more alpha-helical and formed a larger complex (110 A) than control apoA-I (97 A). Furthermore, the rHDL particles containing the V156E mutant did not rearrange to smaller particles in the presence of low density lipoproteins, and had minimal reactivity with lecithin-cholesterol acyltransferase (LCAT), compared with rHDL particles made with control apoA-I. These results suggest a key role for Val-156, or the adjacent central region of apoA-I in the modulation of apoA-I conformation, stability, and self-association in solution, and in the formation of small HDL, the conformational adaptability of apoA-I leading to structural rearrangements of HDL, and the activation of LCAT.  相似文献   

7.
W Wang  E Lewin  K Olgaard 《Steroids》1999,64(10):726-734
Results from our lab have shown previously that parathyroid hormone (PTH) is not the key factor in the rapid regulation of plasma Ca2+. The possible role of 1,25(OH)2D3 in the rapid minute-to-minute regulation of plasma Ca2+, as addressed by a possible rapid non-genomic action of 1,25(OH)2D3, was therefore studied in vivo in rats. The rapid calcemic recovery from induction of hypocalcemia by a brief EGTA infusion was examined in vitamin D-depleted rats with intact parathyroid glands and in vitamin D depleted rats 1 h after parathyroidectomy (PTX). The influence of different levels of plasma 1,25(OH)2D3 on the rapid calcemic recovery from hypocalcemia was examined in PTX rats treated with 1,25(OH)2D3 for two days at two different doses of 0.2 microg/day, 0.05 microg/day or vehicle, and in PTX rats being BNX for two days, as well. Additionally, the long-term effect of 1,25(OH)2D3 on plasma Ca2+ homeostasis was examined. Plasma Ca2+ recovered significantly (P<0.05) 10 min after discontinuing EGTA in vitamin D-depleted rats with or without parathyroid glands. Plasma Ca2+ increased significantly (P<0.05) and at the same rate after induction of hypocalcemia in PTX rats with different levels of plasma 1,25(OH)2D3. The final levels of plasma Ca2+ obtained were set by 1,25(OH)2D3 in a dose-related manner. 1,25(OH)2D3 did not affect the rapid calcemic recovery from EGTA induced hypocalcemia, but only had an effect on the long-term plasma Ca2+ homeostasis in the rat.  相似文献   

8.
The diabetogenic variant PV2 of encephalomyocarditis virus was cloned, and three recombinants differing in their 5' poly(C) tracts were analyzed. It is shown that the poly(C) region is not essential for infectivity in mice but does influence the virus load and degree of pathological lesions within the Langerhans' islets but not in the myocardium.  相似文献   

9.
Olfactory ensheathing cells (OECs) are the non-myelinating glial cells of the olfactory nerves and bulb. The fragmentary characterization of OECs in situ during normal development may be due to their small size requiring intricate ultrastructural analysis and to the fact that available markers for in situ detection are either expressed only by OEC subpopulations or lost during development. In the present study, we searched for markers with stable expression in OECs and investigated the spatiotemporal distribution of CNPase, an early oligodendrocyte/Schwann cell marker, in comparison with the prototype marker p75NTR. Anti-CNPase antibodies labeled canine but not rat OECs in situ, while Schwann cells and oligodendrocytes were positive in both species. CNPase immunoreactivity in the dog was confined to all OECs throughout the postnatal development and associated with the entire cell body, including its finest processes, while p75NTR was mainly detected in perineural cells and only in some neonatal OECs. Adult olfactory bulb slices displayed CNPase expression after 4 and 10 days, while p75NTR was detectable only after 10 days in vitro. Finally, treatment of purified adult canine OECs with fibroblast growth factor-2 significantly reduced CNPase expression at the protein and mRNA level. Taken together, we conclude that CNPase but not p75NTR is a stable marker suitable for in situ visualization of OECs that will facilitate their light-microscopic characterization and challenge our general view of OEC marker expression in situ. The fact that canine but not rat OECs expressed CNPase supports the idea that glia from large animals differs substantially from rodents.  相似文献   

10.
The NS3 protein of hepatitis C virus contains a bipartite structure consisting of an N-terminal serine protease and a C-terminal DEAD box helicase. We show that the C-terminal domain has ATPase and panhelicase activities. The integrity of the helicase function is dependent on the conserved DEAD motif and can be abolished by a His-Ala point mutation, leaving a fully functional nucleoside triphosphatase.  相似文献   

11.
We investigated whether Al(3+)-mediated changes in membrane fluidity can affect the activity of prokaryotic enzymes phospholipase C (PLC) and phospholipase C-phosphatidyl inositol specific (PI-PLC) in liposomes of phosphatidyl choline (PC), PC:phosphatidyl inositol (PI), or PC and polyphosphoinositides (PPI). Al(3+) (10-100 microM) promoted membrane rigidification, evaluated with the probes 1,6-diphenyl-1,3,5-hexatriene and Laurdan, and followed the order: PC:PPI>PC:PI>PC. Al(3+) (25 and 50 microM) did not affect PLC-mediated hydrolysis of PC, PI and PIP(2), but stimulated PIP hydrolysis (48.6%). PI-PLC did not affect PC, PI, and PIP concentrations, but caused a 67% decrease in PIP(2). Al(3+) significantly inhibited PIP(2) hydrolysis in a concentration-dependent (25-50 microM) manner. Results suggest that the inhibition of PIP(2) hydrolysis by Al(3+) could be partially due to a higher lipid packing induced by Al(3+) which could affect the interaction between the enzyme and its substrate.  相似文献   

12.
The cyclin-dependent kinase inhibitor p27(Kip1) is a critical regulator of T cell proliferation. To further examine the relationship of T cell proliferation and differentiation, we examined the ability of T cells deficient in p27(Kip1) to differentiate into Th subsets. We observed increased Th2 differentiation in p27(Kip1)-deficient cultures. In addition to increases in CD4(+) and CD8(+) T cells, there is a similar increase in gamma delta T cells in p27(Kip1)-deficient mice compared with wild-type mice. The increase in Th2 differentiation is correlated to an increase of IL-4 secretion by CD4(+)DX5(+)TCR alpha beta(+)CD62L(low) T cells but not to increased expansion of differentiating Th2 cells. While STAT4- and STAT6-deficient T cells have diminished proliferative responses to IL-12 and IL-4, respectively, proliferative responses are increased in T cells doubly deficient in p27(Kip1) and STAT4 or STAT6. In contrast, the increased proliferation and differentiative capacity of p27(Kip1)-deficient T cells has no effect on the ability of STAT4/p27(Kip1)- or STAT6/p27(Kip1)-deficient CD4(+) cells to differentiate into Th1 or Th2 cells, respectively. Thus, while p27(Kip1) regulates the expansion and homeostasis of several T cell subsets, it does not affect the differentiation of Th subsets.  相似文献   

13.
14.
15.
Summary A locus associated with a severe Minute effect has been mapped at 7C on the X chromosome of Drosophila melanogaster. Previous work has suggested that this Minute encodes ribosomal proteins S14A and S141B. We have made a chromosomal deficiency that removes the S14 ribosomal protein genes, yet does not display the Minute phenotype. These data suggest that the S14 genes do not actually correspond to the Minute locus.  相似文献   

16.
Nucleoside diphosphate kinase of Drosophila, recently identified as the product of the awd gene, is essential for larval development. The conditional lethal mutation Killer of prune maps to the same gene. We purified the nucleoside diphosphate kinases from wild-type and mutant larvae by a simple procedure involving affinity chromatography on blue Sepharose. Both proteins are purified as hexamers in their native state. The mutant protein, which carries a serine instead of proline at position 97, has structural properties and catalytic efficiency that are very similar to the wild-type protein. However, the mutant protein has a much lower stability to denaturation by heat and urea. Following dilution of urea with buffer the urea-denaturated mutant nucleoside diphosphate kinase accumulates as folded monomers and cannot recover its quaternary structure and enzymatic activity. In contrast, the wild-type enzyme recovers hexameric structure and activity. This suggests that the mutation affects the folding/assembly pathway without affecting the function of the mature protein once folded and assembled into the mature hexameric structure.  相似文献   

17.
Protein kinase B is implicated in many crucial cellular processes, such as metabolism, apoptosis and cell proliferation. In contrast to Pkb(alpha) and Pkb(beta)-deficient mice, Pkb(gamma)(-/-) mice are viable, show no growth retardation and display normal glucose metabolism. However, in adult Pkb(gamma)mutant mice, brain size and weight are dramatically reduced by about 25%. In vivo magnetic resonance imaging confirmed the reduction of Pkb(gamma)(-/-) brain volumes with a proportionally smaller ventricular system. Examination of the major brain structures revealed no anatomical malformations except for a pronounced thinning of white matter fibre connections in the corpus callosum. The reduction in brain weight of Pkb(gamma)(-/-) mice is caused, at least partially, by a significant reduction in both cell size and cell number. Our results provide novel insights into the physiological role of Pkb(gamma) and suggest a crucial role in postnatal brain development.  相似文献   

18.
Human dipeptidyl peptidase I was expressed in the insect cell/baculovirus system and purified in its active (rhDPPI) and precursor (pro-rhDPPI) forms. RhDPPI was very similar to the purified enzyme (hDPPI) with respect to glycosylation, enzymatic processing, oligomeric structure, CD spectra, and catalytic activity. The precursor, which was a dimer, could be activated approximately 2000-fold with papain. Cathepsin L efficiently activated pro-rhDPPI in vitro at pH 4.5 (k(app) approximately 2 x 10(3) min(-)(1) M(-)(1)), and two cleavage pathways were characterized. The initial cleavage was within the pro region between the residual pro part and the activation peptide. Subsequently, the activation peptide was cleaved from the catalytic region, and the latter was cleaved into the heavy and light chains. Alternatively, the pro region was first separated from the catalytic region. Cathepsin S was a less efficient activating enzyme. Cathepsin B and rhDPPI did not activate pro-rhDPPI, and the proenzyme was incapable of autoactivation. Incubation of both pro-rhDPPI and rhDPPI with cathepsin D resulted in degradation. Cystatin C and stefins A and B inhibited rhDPPI with K(i) values in the nanomolar range (K(i) = 0.5-1.1 nM). The results suggest that cathepsin L could be an important activator of DPPI in vivo and that cathepsin D and possibly the cystatins may contribute to DPPI downregulation.  相似文献   

19.
The pineal gland and its major output signal melatonin have been demonstrated to play a central role in the seasonal organization of the ruin lizard Podarcis sicula. Seasonal variations in the amplitude of the nocturnal melatonin signal, with high values in spring as compared to low values in summer and autumn, have been found in vivo. The authors examined whether the pineal gland of the ruin lizard contains autonomous circadian oscillators controlling melatonin synthesis and whether previously described seasonal variations of in vivo melatonin production can also be found in isolated cultured pineal glands obtained from ruin lizards in summer and winter. In vitro melatonin release from isolated pineal glands of the ruin lizard persisted for 4 days in constant conditions. Cultured explanted pineal glands obtained from animals in winter and summer showed similar circadian rhythms of melatonin release, characterized by damping of the amplitude of the melatonin rhythm. Although different photoperiodic conditions were imposed on ruin lizards before explantation of pineal glands, the authors did not find any indication for corresponding differences in the duration of elevated melatonin in vitro. Differences were found in the amplitude of in vitro melatonin production in light/dark conditions and, to a lesser degree, in constant conditions. The presence of a circadian melatonin rhythm in vitro in winter, although such a rhythm is absent in vivo in winter, suggests that pineal melatonin production is influenced by an extrapineal oscillator in the intact animal that may either positively or negatively modulate melatonin production in summer and winter, respectively.  相似文献   

20.

Background and Aims

Monoecious plants have the capacity to allocate resources separately to male and female functions more easily than hermaphrodites. This can be advantageous against environmental stresses such as leaf herbivory. However, studies showing effects of herbivory on male and female functions and on the interaction with the plant''s pollinators are limited, particularly in tropical plants. Here, the effects of experimental defoliation were examined in the monoecious shrub Croton suberosus (Euphorbiaceae), a wasp-pollinated species from a Mexican tropical dry forest.

Methods

Three defoliation treatments were applied: 0 % (control), 25 % (low) or 75 % (high) of plant leaf area removed. Vegetative (production of new leaves) and reproductive (pistillate and staminate flower production, pollen viability, nectar production, fruit set, and seed set) performance variables, and the abundance and activity of floral visitors were examined.

Key Results

Defoliated plants overcompensated for tissue loss by producing more new leaves than control plants. Production of staminate flowers gradually decreased with increasing defoliation and the floral sex ratio (staminate : pistillate flowers) was drastically reduced in high-defoliation plants. In contrast, female reproductive performance (pistillate flower production, fruit set and seed set) and pollinator visitation and abundance were not impacted by defoliation.

Conclusions

The asymmetrical effects of defoliation on male and female traits of C. suberosus may be due to the temporal and spatial flexibility in the allocation of resources deployed by monoecious plants. We posit that this helps to maintain the plant''s pollination success in the face of leaf herbivory stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号