首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The sequence AAUAAA is found near the polyadenylation site of eucaryotic mRNAs. This sequence is required for accurate and efficient cleavage and polyadenylation of pre-mRNAs in vivo. In this study we show that synthetic simian virus 40 late pre-mRNAs are cleaved and polyadenylated in vitro in a HeLa cell nuclear extract, and that cleavage in vitro is abolished by each of four different single-base changes in AAUAAA. In this same extract, precleaved RNAs (RNAs with 3' termini at the polyadenylation site) are efficiently polyadenylated. This in vitro polyadenylation reaction also requires the AAUAAA sequence.  相似文献   

6.
7.
Qiu J  Cheng F  Pintel D 《Journal of virology》2007,81(15):7974-7984
Adeno-associated virus type 5 (AAV5) is unique among human AAV serotypes in that it uses a polyadenylation site [(pA)p] within the single small intron in the center of the genome. We previously reported that inhibition of polyadenylation at (pA)p, necessary for read-through of P41-generated capsid gene pre-mRNAs which are subsequently spliced, requires binding of U1 snRNP to the upstream donor. Inhibition was reduced as the distance between the cap site and the donor was increased (increasing the size of the 5' exon). Here, we have demonstrated that U1-70K is a key component of U1 snRNP that mediates inhibition of polyadenylation at (pA)p. Furthermore, introduction of a U-rich stretch, predicted to target TIA-1 and thus increase the affinity of U1 snRNP binding to the intervening donor site, significantly augmented inhibition of (pA)p, while depletion of TIA-1 by siRNA increased (pA)p read-through. Finally, artificially tethering the cap binding complex (CBC) components CBP80 and CBP20 upstream of the intron donor increased inhibition of polyadenylation at (pA)p. Our results suggest that interaction with the CBC strengthens U1 snRNP binding to the downstream intron donor in a manner inversely proportional to the size of the 5' exon, thus governing the competition between intron splicing and polyadenylation at (pA)p. This competition must be optimized to program both the levels of polyadenylation of P7- and P19-generated RNA at (pA)p required to produce proper levels of the essential Rep proteins and the splicing of P41-generated RNAs to produce the proper ratio of capsid proteins during AAV5 infection.  相似文献   

8.
9.
10.
11.
Extracts from HeLa cell nuclei assemble RNAs containing the adenovirus type 2 L3 polyadenylation site into a number of rapidly sedimenting heterodisperse complexes. Briefly treating reaction mixtures prior to sedimentation with heparin reveals a core 25S assembly formed with substrate RNA but not an inactive RNA containing a U----C mutation in the AAUAAA hexanucleotide sequence. The requirements for assembly of this heparin-stable core complex parallel those for cleavage and polyadenylation in vitro, including a functional hexanucleotide, ATP, and a uridylate-rich tract downstream of the cleavage site. The AAUAAA and a downstream U-rich element are resistant in the assembly to attack by RNase H. The poly(A) site between the two protected elements is accessible, but is attacked more slowly than in naked RNA, suggesting that a specific factor or secondary structure is located nearby. The presence of a factor bound to the AAUAAA in the complex is independently demonstrated by immunoprecipitation of a specific T1 oligonucleotide containing the element from the 25S fraction. Precipitation of this fragment from reaction mixtures is blocked by the U----C mutation. However, neither ATP nor the downstream sequence element is required for binding of this factor in the nuclear extract, suggesting that recognition of the AAUAAA is an initial event in complex assembly.  相似文献   

12.
13.
14.
mRNAs R1 and R2 of the parvovirus minute virus of mice encode the two essential viral regulatory proteins NS1 and NS2. Both RNAs are spliced between map units 44 and 46 (nucleotides 2280 and 2399); R2 RNAs are additionally spliced upstream between map units 10 and 39 (nucleotides 514 and 1989), using a nonconsensus donor and poor 3' splice site. The relative accumulation of R1 and R2 is determined by alternative splicing: there is twice the steady-state accumulation of R2 relative to that of R1 throughout viral infection, though they are generated from the same promoter and have indistinguishable stabilities. Here we demonstrate that efficient excision of the large intron to generate R2 is dependent on at least the initial presence, in P4-generated pre-mRNAs, of sequences within the downstream small intron. This effect is orientation dependent and related to the size of the intervening exon. Prior splicing of the small intron is unnecessary. Excision of the large intron is enhanced by changing its donor site to consensus, but only in the presence of the small intron sequences. Excision of the large intron is also enhanced by improving the polypyrimidine tract within its 3' splice site; however, in contrast, this change renders excision of the large intron independent of the downstream small intron. We suggest that sequences within the small intron play a primary role in efficient excision of the upstream large intron, perhaps as the initial entry site(s) for an element(s) of the splicesome, which stabilizes the binding of required factors to the polypyrimidine tract within the 3' splice site of the large intron.  相似文献   

15.
16.
E C Scharl  J A Steitz 《The EMBO journal》1994,13(10):2432-2440
Two conserved elements direct the 3' end processing of histone messenger RNA: a stem-loop structure immediately upstream of the site of cleavage and the histone downstream element (HDE), located 12-19 nucleotides downstream of the stem-loop in the premessenger RNA. We studied the role of these two elements by systematically inserting up to 10 C residues between them in the mouse H2A-614 histone pre-mRNA. 3' End mapping of RNAs processed in vitro demonstrated that as the HDE is move downstream, the site of cleavage correspondingly moves 3'. In addition, the efficiency of processing declines. In the wild-type substrate, cleavage occurs 3' of an A residue; modest increases in the efficiency of processing of the insertion mutants were observed when an A residue was placed at the new cleavage site. The results of psoralen cross-linking studies and immunoprecipitations using anti-trimethylguanosine antibodies indicated that the decreased processing efficiency of the insertion mutants is not due to impaired binding of the U7 small nuclear ribonucleoprotein (snRNP). We conclude that the mammalian U7 snRNP acts as a molecular ruler, targeting enzymatic components of cleave histone pre-mRNAs a fixed distance from its binding site, the HDE.  相似文献   

17.
We have investigated the assembly of complexes associated with in vitro cleavage and polyadenylation of synthetic pre-mRNAs by native gel electrophoresis. Incubation of SP6-generated pre-mRNA containing the adenovirus L3 polyadenylation site in HeLa cell nuclear extract results in the rapid assembly of specific complexes. Formation of these complexes precedes the appearance of cleaved intermediates and polyadenylated products and is dependent on an intact polyadenylation signal within the pre-mRNA. The specific complexes do not form on RNAs with point mutations in the AAUAAA sequence upstream of the L3 polyadenylation site. Furthermore, such mutant RNAs cannot compete for factors involved in the assembly of specific complexes on wild-type pre-mRNA. Upon complex formation a 67-nucleotide region of the L3 pre-mRNA is protected from RNase T1 digestion. This region contains both the upstream AAUAAA signal and the GU-rich downstream sequences. Cleavage and polyadenylation occur within the specific complexes and the processed RNA is subsequently released. We propose that the assembly of specific complexes represents an essential step during pre-mRNA 3' end formation in vitro.  相似文献   

18.
19.
20.
The heterogeneous nuclear ribonucleoprotein C1 and C2 proteins were preferentially cross-linked by treatment with UV light in nuclear extracts to RNAs containing six different polyadenylation signals. The domain required for the interaction was located downstream of the poly(A) cleavage site, since deletion of this segment from several polyadenylation substrate RNAs greatly reduced cross-linking efficiency. In addition, RNAs containing only downstream sequences were efficiently cross-linked to C proteins, while fully processed, polyadenylated RNAs were not. Analysis of mutated variants of the simian virus 40 late polyadenylation signal showed that uridylate-rich sequences located in the region between 30 and 55 nucleotides downstream of the cleavage site were required for efficient cross-linking of C proteins. This downstream domain of the simian virus 40 late poly(A) addition signal has been shown to influence the efficiency of the polyadenylation reaction. However, there was not a strict correlation between cross-linking of C proteins and the efficiency of polyadenylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号