首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Dry matter, energy and nitrogen budgets of the form: ingestion=growth+feces+respiration, were determined for larvae of 34 species of Hymenoptera and Lepidoptera collected from and fed leaves of black cherry (Prunus serotina). The mean growth efficiencies based on energy were: gross (100 growth/ingestion)= 17±4, and net (100 growth/(ingestion-feces))=44±8. The mean nitrogen conversion efficiency was 42±10%. Correlation analysis of the relationships among larval factors (larval nitrogen content, energy equivalents, and size), leaf factors (leaf nitrogen, energy, and water content) and larval growth rates or growth efficiencies suggest that the species are temporally adapted, compensating for the limiting effects of decreasing nitrogen and leaf water as leaves mature.  相似文献   

2.
Summary This study examined the effects of intraspecific variation in leaf nitrogen and water content on the growth, consumption, conversion efficiency and nitrogen use of Colias butterfly larvae. Pest and non-pest Colias philodice eriphyle larvae and Colias eurytheme larvae were fed field-collected alfalfa (Medicago sativa) and vetch (Vicia americana) leaves in laboratory experiments. In all treatments, at least one indicator of larval growth performance was positively correlated with leaf nitrogen content, which supports the view that nitrogen is a limiting nutrient for larval growth. The benefits associated with eating leaves with high nitrogen content included higher growth rates, conversion efficiencies, nitrogen accumulation rates and larval nitrogen contents. Over the ranges examined in this study, variation in leaf nitrogen content (2.8–7.0% dry wt) affected larval growth more than variation in leaf water content (66–79% fresh wt). Pest and non-pest C. p. eriphyle responded alike to variation in the leaf nitrogen content of vetch, but there were differences between populations on alfalfa. Pest larvae were more sensitive to variation in leaf water content than non-pest larve. The differences between these populations may be due to specific adaptations resulting from the shift to alfala by pest Colias. It is suggested that herbivores' responses to intraspecific variation in leaf nitrogen content may have important consequences for the evolution of plant defenses and nutrient allocation patterns, and for agricultural pest management.  相似文献   

3.
Pepper plants were grown under different water and nitrogen availabilities that produced severe nitrogen limitations and mild water stress. Nitrogen limitation produced lower leaf N content, higher C:N, and higher leaf content of phenolic compounds, in consonance with the carbon/nutrient balance hypothesis. Nitrogen limitation also produced lower nutritional quality of leaves, with lower relative growth rates and lower efficiency of conversion of ingested biomass on the polyphagous herbivoreHelicoverpa armigera. The biomass gained per gram nitrogen ingested also tended to be lower in those insects feeding on nitrogen-limited plants, in parallel with their higher phenolic content. However, larvae fed on nitrogen-limited plants did not increase the ingestion of food to compensate for the N deficiency of leaves. The mild water stress, which only slightly tended to increase the phenolic content of pepper leaves, had no significant effect on nutritional indices.  相似文献   

4.
Summary Prediapause larvae of the checkerspot butterfly Euphydryas chalcedona were raised from hatch until entrance into diapause on artificial diets. The proportions of protein and host plant leaf resin differed among the diets. Larval size growth rates and mortality were monitored and overall rates and efficiencies of food use were computed.Larval survivorship, growth rate and size of larvae at idapause were significantly enhanced by increasing dietary protein content, particularly over the range found in leaves of the host plant. In contrast, an increasing dietary content of Diplacus aurantiacus leaf resin significantly depressed larval surviviorship, growth rates and size of larvae at diapause. A simple dosedependent interaction was observed between the effects of dietary leaf resin and protein on larval success. Dietary content of leaf resin and protein significantly influenced some measures of food utilization efficiency (ECI and ECD), but not others (AD and NUE).The negative interaction between the effects of dietary leaf resin and protein content suggests the leaf resin phenolic compounds reduce the availability of protein to the larvae. The results for efficiency indices of larval food use are potentially in conflict with this interpretation.The influence of host plant leaf resin and protein on larval success, coupled with the relation between photosynthesis and leaf nitrogen content, are consistent with the hypothesis that productivity can be enhanced by herbivore deterrence resulting from leaf resin production.  相似文献   

5.
The Australian weevil Oxyops vitiosa was released in 1997 in Florida as a biological control agent of Melaleuca quinquenervia. The larvae of this agent are flush-feeders, found only on the growing tips of their host. Knowledge of this restriction to feeding on the growing tips and other nutritional requirements may assist in the establishment and dispersal of this species. Therefore, O. vitiosa survival was assessed when neonates were fed M. quinquenervia leaves from branches that had dormant buds or emerging bud leaves. Additionally, the influence of leaf quality from different sites and within sites was determined by the feeding of neonates emerging bud leaves collected at three sites and from three leaf qualities (poor, intermediate, and high). Within-site leaf qualities were described in the field by leaf color and in the laboratory by percentage dry mass and nitrogen. Larval survival was lowest when fed leaves from branches that had dormant buds. Associated with this low survival were high leaf toughness and percentage dry mass. When larvae were fed emerging bud leaves, most of the variation in larval survival and performance was attributed to differences in within-site plant quality. Generally, the highest-quality leaves had relatively low percentage dry mass and high percentage nitrogen. Larval survival generally decreased when fed the poor-quality leaves, and in one site, the intermediate-quality leaves. Larvae required less time to develop to adults when fed the high-quality leaves. Development time increased in females but not in males when the larvae were fed the poor-quality leaves. Adult biomass of both females and males generally increased when the larvae were fed the high-quality leaves from two of the three sites. The results indicate that the larvae of O. vitiosa are restricted to feeding on flush foliage with low toughness. Additionally, variations in foliar percentage dry mass and nitrogen influence larval survival and performance. This knowledge benefited the development of mass-production nursery sites and the selection of suitable release sites, which facilitated the establishment of this biological control agent.  相似文献   

6.
The northern tamarisk beetle (Diorhabda carinulata Desbrochers) was released in several western states as a biocontrol agent to suppress Tamarix spp. L. which has invaded riparian ecosystems; however, effects of beetle herbivory on Tamarix physiology are largely undocumented and may have ecosystem ramifications. Herbivory by this insect produces discoloration of leaves and premature leaf drop in these ecosystems, yet the cause of premature leaf drop and the effects of this leaf drop are still unknown. Insect herbivory may change leaf photosynthesis and respiration and may affect a plant’s ability to regulate water loss and increase water stress. Premature leaf drop may affect plant tissue chemistry and belowground carbon allocation. We conducted a greenhouse experiment to understand how Tamarix responds physiologically to adult beetle and larvae herbivory and to determine the proximate cause of premature leaf drop. We hypothesized that plants experiencing beetle herbivory would have greater leaf and root respiration rates, greater photosynthesis, increased water stress, inefficient leaf nitrogen retranslocation, lower root biomass and lower total non-structural carbohydrates in roots. Insect herbivory reduced photosynthesis rates, minimally affected respiration rates, but significantly increased water loss during daytime and nighttime hours and this produced increased water stress. The proximate cause for premature leaf drop appears to be desiccation. Plants exposed to herbivory were inefficient in their retranslocation of nitrogen before premature leaf drop. Root biomass showed a decreasing trend in plants subjected to herbivory. Stress induced by herbivory may render these trees less competitive in future growing seasons.  相似文献   

7.
Compensatory responses of caterpillars fed low quality food include increased consumption and utilization of essential nutrients. Information about an insect's responses to nutritional challenges from their host plants could benefit weed biological control efforts in the selection and establishment of new agents. The target weed, Pistia stratiotes L. (Araceae) is a floating aquatic plant that has relatively low nitrogen levels which are further diluted with high water content. Efforts to establish the insect Spodoptera pectinicornis (Hampson) (Lepidoptera: Noctuidae) for biological control of P. stratiotes could benefit by examining the nutritional responses of a similar widely established lepidopteran species, Samea multiplicalis (Guenèe) (Lepidoptera: Pyralidae). Larvae of this species were fed leaves of P. stratiotes plants that had been fertilized (NPK) at high and low rates. The leaves of the fertilized plants had a 4.3-fold increase in nitrogen (dry weight) and a 1.6-fold increase in water content. The results suggest that no compensatory increases occurred in larvae fed leaves from the low fertilized plants as no changes were found in fresh mass consumption or nitrogen utilization efficiency. Consequently, development time from second-third instars to pupation was delayed about 3 days compared with larvae fed the high nitrogen leaves. Furthermore, consumption of nitrogen was only 30% and its accumulation into larval tissues was only 60% compared with the larvae fed the high fertilized leaves. The resulting larvae had both a final biomass and a growth rate that were reduced by 40%. Regardless of plant fertilizer level, the larvae fed at a rate 5–10 times greater than that of similar lepidopteran species consuming either low or high quality diets, suggesting that the S. multiplicalis larvae may be functioning at their biological limit for ingesting food.  相似文献   

8.
Abstract. 1. Larvae of the grazing caddis‐fly Melampophylax mucoreus were reared in a laboratory experiment investigating the effect of food availability on different substrates and cannibalism on the size and biomass of emergent adults. All experiments were performed in stream‐water filled, aerated aquaria under controlled temperature and light conditions. Larvae (fourth and fifth instar) were reared in aquaria (50 larvae in each) with three substrate scenarios: (i) limestone (LS), (ii) limestone and leaf litter (LS + L), and (iii) silicate stone (SS). 2. Cannibalism among the larvae in the LS scenario led to the highest adult dry masses (male = 5.13 ± 0.25 mg, female = 7.64 ± 0.63 mg) and to the highest mortality rate (88.7%). The SS scenario displayed the most unfavourable condition for larval growth indicated by the lowest adult dry masses (males = 3.12 ± 0.15 mg, females = 4.69 ± 0.25 mg) and a high mortality rate (81.7%). The limestone supplemented with leaf litter (ii) offered the most balanced nutrients to complete larval development and enough shelter to avoid excessive encounter rates of larvae within the aquaria, indicated by the lowest mortality rate (43.6%). Adults from the LS + L scenario showed biomasses (male = 3.94 ± 0.12 mg, female = 6.48 ± 0.24 mg) intermediate between the two other scenarios. 3. The results implied that cannibalism among larvae can lead to higher adult biomasses and therefore to increased fitness, if cannibalism supplements larval feeding requirements. Larvae developing under insufficient food availability can not compensate for this by cannibalism. Additionally, leaf litter not only provided a complementary food source for developing larvae, but also provided shelter, which reduced encounter rates. 4. Increased stress induced by high larval encounter rates (resulting in enhanced cannibalism) in the LS scenario and low food availability in the SS scenario could be indicated by premature emergence times compared with the LS + L scenario.  相似文献   

9.
To understand how the increase in atmospheric CO2 from human activity may affect leaf damage by forest insects, we examined host plant preference and larval performance of a generalist herbivore, Antheraea polyphemus Cram., that consumed foliage developed under ambient or elevated CO2. Larvae were fed leaves from Quercus alba L. and Quercus velutina Lam. grown under ambient or plus 200 microl/liter CO2 using free air carbon dioxide enrichment (FACE). Lower digestibility of foliage, greater protein precipitation capacity in frass, and lower nitrogen concentration of larvae indicate that growth under elevated CO2 reduced the food quality of oak leaves for caterpillars. Consuming leaves of either oak species grown under elevated CO2 slowed the rate of development of A. polyphemus larvae. When given a choice, A. polyphemus larvae preferred Q. velutina leaves grown under ambient CO2; feeding on foliage of this species grown under elevated CO2 led to reduced consumption, slower growth, and greater mortality. Larvae compensated for the lower digestibility of Q. alba leaves grown under elevated CO2 by increasing the efficiency of conversion of ingested food into larval mass. Despite equivalent consumption rates, larvae grew larger when they consumed Q. alba leaves grown under elevated compared with ambient CO2. Reduced consumption, slower growth rates, and increased mortality of insect larvae may explain lower total leaf damage observed previously in plots in this forest exposed to elevated CO2. By subtly altering aspects of leaf chemistry, the ever-increasing concentration of CO2 in the atmosphere will change the trophic dynamics in forest ecosystems.  相似文献   

10.
Water availability and plant community composition alter plant nutrient availability and the accumulation of plant defence compounds therefore having an impact on herbivore performance. Combined effects of drought stress and plant community composition on leaf chemicals and herbivore performance are largely unexplored. The objective of our study was, therefore, to find out the impact of extreme drought and of plant community composition on plant–herbivore interactions. Larvae of the generalist butterfly Spodoptera littoralis were reared on leaves of the grass Holcus lanatus which was grown in experimental communities, differing in species- and functional group richness. These communities were either subjected to extreme drought or remained under ambient climatic conditions. Drought decreased relative water content, soluble protein content, nitrogen and total phenol content and increased the content of carbohydrates in the grass. As a consequence, the larvae feeding on drought-exposed plants revealed a longer larval stage, increased pupal weight and higher adult eclosion rates. Plant community composition mainly caused changes to the defensive compounds of the grass, but also marginally affected protein and carbohydrate content. Larvae feeding on species-richest communities without legumes showed the highest mortality. Our findings imply that climate change that is projected to increase the frequency of severe droughts, as well as alter plant community compositions, is likely to affect arthropod–plant interactions through an alteration of leaf chemicals.  相似文献   

11.
Summary The chaparral shrub Eriodictyon californicum secretes a phenolic leaf resin composed of flavonoid aglycones. We used leaves with artificially altered resin contents to test the effects of resin on the feeding, growth, and oviposition of the specialist herbivore Trirhabda diducta. In addition, we compared Trirhabda feeding and growth on young foliage with that on foliage from the preceding year. Our results show that the Eriodictyon leaf resin affects Trirhabda larvae and adults similarly, having no significant effect on growth rates or on nutrient utilization at up to 5X the resin levels normally encountered by larvae in the field. Both Trirhabda larvae and adults respond to high resin concentrations by increasing their consumption rates, with concomitant decreases in digestibility and the efficiency of conversion of ingested food to biomass. Low-resin foliage is preferred by larvae for feeding and by adults for oviposition. Larvae feeding on leaves of the current season have higher growth efficiencies, consumption, and growth compared to larvae feeding on leaves from the preceding year.  相似文献   

12.
To determine how nutritional indices for insects fed leaves are affected by the experimental conditions and the physiology of the plant material, we used larvae of the buckmoth, Hemileuca lucina Hy. Ed. (Saturniidae) and their hostplant Spiraea latifolia Ait. Bork (Rosaceae). Under experimental conditions identical to those used to determine larval nutritional indices, we found that the age of leaves (new versus mature) significantly affected their metabolism and water loss, but simulated herbivory did not directly affect leaf metabolism. Over a 6-day test, nitrogen concentration showed an initial increase followed by a gradual decline, and was higher in new leaves compared to mature leaves. New leaves increased in protein concentration and then gradually returned to the initial level, whereas mature leaves changed little over the 6-day test. These changes in percent nitrogen and protein may largely reflect the disproportional changes in non-nitrogenous materials. Solitary and grouped larvae had similar growth rates on new leaves, but they differed on mature leaves. Deliberate manipulation of larvae during the course of an experiment significantly reduced relative growth rates by increasing duration of the stadium rather than by decreasing biomass gained. Two methods of estimating larval gut contents at mid-stadium were compared: weight of frass produced and weight of digestive tract and contents. After the end of the 4-day test period used to determine nutritional indices, the digestive tracts with food accounted for 10.8% of the larval dry weight. Larval frass produced in 24 h after the end of the test period comprised 9.3% of the larval dry weight. Correction factors for plant metabolism changed nutritional indices by 1 to 8%, while those for larval gut contents altered indices by 2 to 15%.  相似文献   

13.
Leaf age and larval performance of the leaf beetle Paropsis atomaria   总被引:1,自引:0,他引:1  
ABSTRACT.
  • 1 Larval performance of the leaf beetle Paropsis atomaria Oliver was determined for larvae raised on both new and mature leaves of Eucalyptus blakelyi Maiden. Larvae were transferred to mature leaves at different ages; control larvae stayed on new leaves through all instars.
  • 2 Only larvae reared on new leaves through the third instar survived to pupate on mature leaves; developmental time was prolonged by 20% and pupal weight was reduced by 50% in these larvae compared with larvae reared entirely on new leaves. Almost all larvae died when transferred to mature leaves as first, second or third instars.
  • 3 Low survival and slow development on mature leaves was mainly due to failure by larvae to feed. Larvae palpated leaves and could discriminate among leaf ages immediately, without biting into the leaf tissue.
  • 4 New leaves had higher concentrations of oil and tannins than old leaves, while there were no significant differences in nitrogen concentrations in the two types of leaves. Mature leaves were more than 3 times tougher than new leaves, in terms of g mm?2 of penetrometer force.
  • 5 In drought years E. blakelyi may not produce sufficient new leaves to supply specialist herbivores with their preferred food resource. We infer that drought years reduce P. atomaria larval performance significantly, and influence the population dynamics of the insect.
  相似文献   

14.
ABSTRACT. 1. Previous work has shown that leaf age affects recruitment trail marking by eastern tent caterpillars ( Malacosoma americanum Fabr.). Young leaves of host plants elicit trail marking to a greater degree than mature leaves.
2. Experiments were conducted to establish the relationship between the differential behavioural responses of larvae to young and mature leaves and the suitability of foliage for larval growth and survival. Foliage of black cherry ( Prunus serotina Ehrh.), a typical rosaceous host plant, was used for this comparison.
3. Larvae preferred young leaves to mature leaves in choice tests, and marked more to young leaves than to mature leaves in no-choice tests.
4. Mature leaves supported adequate growth through two larval instars of rearing, but thereafter were unsuitable for growth. Larvae fed mature leaves had lower pupal weight, poorer survival, and grew less efficiently than larvae fed young leaves.
5. The results support the hypothesis that the trail communication system of eastern tent caterpillars is an adaptation to efficiently locate leaves which are favourable for larval growth and survival.  相似文献   

15.
Folivorous insect responses to elevated CO2-grown tree species may be complicated by phytochemical changes as leaves age. For example, young expanding leaves in tree species may be less affected by enriched CO2-alterations in leaf phytochemistry than older mature leaves due to shorter exposure times to elevated CO2 atmospheres. This, in turn, could result in different effects on early vs. late instar larvae of herbivorous insects. To address this, seedlings of white oak (Quercus alba L.), grown in open-top chambers under ambient and elevated CO2, were fed to two important early spring feeding herbivores; gypsy moth (Lymantria dispar L.), and forest tent caterpillar (Malacosoma disstria Hübner). Young, expanding leaves were presented to early instar larvae, and older fully expanded or mature leaves to late instar larvae. Young leaves had significantly lower leaf nitrogen content and significantly higher total nonstructural carbohydrate:nitrogen ratio as plant CO2 concentration rose, while nonstructural carbohydrates and total carbon-based phenolics were unaffected by plant CO2 treatment. These phytochemical changes contributed to a significant reduction in the growth rate of early instar gypsy moth larvae, while growth rates of forest tent caterpillar were unaffected. The differences in insect responses were attributed to an increase in the nitrogen utilization efficiency (NUE) of early instar forest tent caterpillar larvae feeding on elevated CO2-grown leaves, while early instar gypsy moth larval NUE remained unchanged among the treatments. Later instar larvae of both insect species experienced larger reductions in foliage quality on elevated CO2-grown leaves than earlier instars, as the carbohydrate:nitrogen ratio of leaves substantially increased. Despite this, neither insect species exhibited changes in growth or consumption rates between CO2 treatments in the later instar. An increase in NUE was apparently responsible for offsetting reduced foliar nitrogen for the late instar larvae of both species.  相似文献   

16.
Lymantria dispar larvae were reared on a wheat germ-based artificial diet from egg eclosion until pupation. Utilization efficiency of dietary nitrogen underwent an age-specific decrease from 75% in the first instar to 54 and 43% for last-instar female and male larvae, respectively. Relative rates (mg/day/mg biomass) of nitrogen consumption and assimilation also decreased during larval development, but the excretion rate of nitrogen was constant for all instars and both sexes. Larval % nitrogen decreased as the larvae matured, while the percentage in the frass increased. These data suggest that need for nitrogen decreases as the larva matures. While L. dispar is comparatively inefficient at assimilating dietary nitrogen, over one-half of that assimilated by the female larva is transferred to egg production by the adult.  相似文献   

17.
K. S. Williams 《Oecologia》1983,56(2-3):323-329
Summary The interactions between the checkerspot butterfly, Euphydryas chalcedona, and two of its principal host plants, Diplacus aurantiacus and Scrophularia californica, were studied to test the hypothesis that feeding behavior in nature reflects food quality in terms of leaf nitrogen and defensive chemical contents. Larvae preferentially fed on Diplacus leaves containing the highest nitrogen: resin ratio in the field and laboratory. Larvae did not feed selectively among Scrophularia leaves, which show little variation in quality. Seasonal timing of feeding activity and larval development rates were closely related to the availability of any Scrophularia leaves and high-quality Diplacus leaves.  相似文献   

18.
Summary We studied the effects of nitrogen supply on growth, allocation, and gas exchange characteristics of two perennial grasses of dry, nutrient-poor inland dunes: Corynephorus canescens (L.) Beauv. and Agrostis vinealis Schreber. C. canescens invests more biomass in leaves and less in roots, but has less leaf area and more root length per unit plant weight than A. vinealis. A. vinealis invests more nitrogen per unit leaf weight, but less per unit leaf area, despite a similar relative nitrogen investment in leaves and plant nitrogen concentration. Between-species differences in the rate of net photosynthesis, transpiration and shoot respiration are positively related to leaf nitrogen content per unit leaf area. The rate of net photosynthesis per unit plant weight is higher for A. vinealis at both levels of nitrogen supply, due to differences in leaf area ratio (LAR), and despite the reverse differences in the rate of net photosynthesis per unit leaf area. The water use efficiency of the two species is similar and increases significantly with an increase in nitrogen supply. The photosynthetic nitrogen use efficiency on the other hand is not affected by nitrogen supply, while at both low and high nitrogen supply A. vinealis has a 10% higher photosynthetic nitrogen use efficiency than C. canescens.  相似文献   

19.
Individual quaking aspen trees vary greatly in foliar chemistry and susceptibility to defoliation by gypsy moths and forest tent caterpillars. To relate performance of these insects to differences in foliar chemistry, we reared larvac from egg hatch to pupation on leaves from different aspen trees and analyzed leaf samples for water, nitrogen, total nonstructural carbohydrates, phenolic glycosides, and condensed tannins. Larval performance varied markedly among trees. Pupal weights of both species were strongly and inversely related to phenolic glycoside concentrations. In addition, gypsy moth performance was positively related to condensed tannin concentrations, whereas forest tent caterpillar pupal weights were positively associated with leaf nitrogen concentrations. A subsequent study with larvae fed aspen leaves supplemented with the phenolic glycoside tremulacin confirmed that the compound reduces larval performance. Larvae exhibited increased stadium durations and decreased relative growth rates and food conversion efficiencies as dietary levels of tremulacin increased. Differences in performance were more pronounced for gypsy moths than for forest tent caterpillars. These results suggest that intraspecific variation in defensive chemistry may strongly mediate interactions between aspen, gypsy moths and forest tent caterpillars in the Great Lakes region, and may account for differential defoliation of aspen by these two insect species.  相似文献   

20.
Summary The energy budget for feeding activity and growth of larval Gynaephora groenlandica was investigated on the tundra and in the laboratory. Larvae fed only in June when the buds and young leaves of Salix arctica, its principal host plant, contained the highest concentrations of macro-nutrients and total nonstructural carbohydrates (TNC). The mid-summer hiatus in larval feeding was coincident with an abrupt decline in the TNC content of leaves and a buildup of plant secondary metabolites in the leaves of S. arctica. Following cessation of feeding, the larvae remained concealed from the sun within crevices and vegetation mats. Growth rates of larvae incubated at 15 and 30°C were similar (4.7–5.0 mg/larva/day), but the assimilation efficiency at 15°C was four times greater (40%) than at 30°C. Growth rates were lowest at 5°C (0.22mg/larva/day) as was the assimilation efficiency (6.6%), because of the extended residence time of food in the gut. The high rate of ingestion and excretion at 30°C was caused by elevated maintenance metabolism. Changes in metabolic state influenced oxygen consumption, which was highest for feeding larvae (0.29 ml/g/h) and significantly lower for each, digesting, moving, starved larvae, and lowest for inactive larvae (0.06 ml/g/h). An influence of temperature and leaf quality on digestion rate and maintenance metabolism is the most likely cause of the feeding behavior pattern in G. groenlandica. The larvae may undergo voluntary hypothermia in order to avoid an energy, deficit resulting from high maintenance metabolism during mid-season when the energy content and food quality declines. The restriction of growth and development to a very short period prior to mid-summer may have contributed, to the extended 14-year life cycle of this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号