首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Recombinant avian leukosis viruses have been constructed from the molecularly cloned DNAs of Rous-associated virus type 1 (RAV-1) and Rous-associated virus type 0(RAV-0). Virus encoded by the cloned RAV-1 DNA induced a high incidence of B-cell lymphoma and a moderate incidence of a variety of other neoplasms. Virus encoded by the cloned RAV-0 DNA did not cause disease. Virus recovered from DNA constructions that encoded the gag, pol, and 5' env sequences of RAV-0 and the 3' env and long terminal repeat sequences of RAV-1 did not cause a high incidence of lymphoma. Rather, these constructed viruses induced a low incidence of a variety of neoplasms. Virus recovered from reconstructed pRAV-1 DNA had the same disease potential as did virus recovered from the parental pRAV-1 DNA. These results indicate that the long terminal repeat sequences of RAV-1 do not confer the potential to induce a high incidence of B-cell lymphoma.  相似文献   

2.
The nucleotide sequence of the env gp85-coding domain from two avian sarcoma and leukosis retrovirus isolates was determined to identify host range and antigenic determinants. The predicted amino acid sequence of gp85 from a subgroup D virus isolate of the Schmidt-Ruppin strain of Rous sarcoma virus was compared with the previously reported sequences of subgroup A, B, C, and E avian sarcoma and leukosis retroviruses. Subgroup D viruses are closely related to the subgroup B viruses but have an extended host range that includes the ability to penetrate certain mammalian cells. There are 27 amino acid differences shared between the subgroup D sequence and three subgroup B sequences. At 16 of these sites, the subgroup D sequence is identical to the sequence of one or more of the other subgroup viruses (A, C, and E). The remaining 11 sites are specific to subgroup D and show some clustering in the two large variable regions that are thought to be major determinants of host range. Biological analysis of recombinant viruses containing a dominant selectable marker confirmed the role of the gp85-coding domain in determining the host range of the subgroup D virus in the infection of mammalian cells. We also compared the sequence of the gp85-coding domain from two subgroup A viruses, Rous-associated virus type 1 and a subgroup A virus of the Schmidt-Ruppin strain of Rous sarcoma virus. The comparison revealed 24 nonconservative amino acid changes, of which 6 result in changes in potential glycosylation sites. The positions of 10 amino acid differences are coincident with the positions of 10 differences found between two subgroup B virus env gene sequences. These 10 sites identify seven domains in the sequence which may constitute determinants of type-specific antigenicity. Using a molecular recombinant, we demonstrated that type-specific neutralization of two subgroup A viruses was associated with the gp85-coding domain of the virus.  相似文献   

3.
Recombinant viruses were made between myeloblastosis-associated virus MAV-2(O) and UR2AV to examine the relationship between regions of the MAV-2(O) genome and disease induction. The env-long terminal repeat (LTR) portion of MAV-2(O), when substituted into UR2AV, was sufficient to induce osteopetrosis identical to that caused by the parent MAV-2(O). When this region was reduced to the gp37 and LTR of MAV-2(O), osteopetrosis more severe than that caused by the parent virus was induced. Recombinant viruses that contained all or part of the MAV-2(O) env gene in the absence of the MAV-2(O) LTR induced a severe, chronic anemia and late-onset osteopetrosis, leading to the conclusion that the MAV-2(O) LTR, in addition to env, was required for rapid induction of osteopetrosis. A viral recombinant, pEU, which contained the gp85 segment of UR2AV substituted into MAV-2(O), induced an ataxia/cerebellar dysfunction not seen during infection with the other chimeric or parent viruses. In vitro studies of the parent and recombinant viruses demonstrated that the ability to form plaques on chicken embryo fibroblasts correlated with the presence of the MAV-2(O) gp37 and LTR except for construct pEU. When the viruses were inoculated into 10-day-old chickens, chimeras containing the env-LTR of gp37-LTR region of MAV-2(O) induced severe regenerative anemia similar to that induced by MAV-2(O). pEU was the exception, suggesting that the unique configuration of this chimera is responsible for its unusual pathogenic properties.  相似文献   

4.
Chickens susceptible to infection with subgroup E viruses were inoculated with four independent isolates of Rous-associated virus type 60 (RAV-60) that are subgroup e recombinants of endogenous and exogenous virus. Neoplasms developed in each inoculated group. Therefore, nontransforming viruses of subgroup E can induce lymphoid leukosis at a moderate rate compared with RAV-0, a subgroup E endogenous virus, suggesting that oncogenicity is not a viral envelope (env)-related characteristic. Since the common (c) regions of the RAV-60s examined were of exogenous origin, we suggest that the c region rather than env is important for a high rate of induction of lymphoid leukosis and related neoplasms.  相似文献   

5.
A series of recombinants between Rous-associated virus type 0 (RAV-0), RAV-1, and a replication-competent avian leukosis virus vector (RCAN) have been tested for disease potential in day-old inoculated K28 chicks. RAV-0 is a benign virus, whereas RAV-1 and RCAN induce lymphoma and a low incidence of a variety of other neoplasms. The results of the oncogenicity tests indicate that (i) the long terminal repeat regions of RAV-1 and RCAN play a major role in disease potential, (ii) subgroup A envelope glycoproteins are associated with a two- to fourfold higher incidence of lymphoma than subgroup E glycoproteins, and (iii) certain combinations of 5' viral and env sequences cause osteopetrosis in a highly context-dependent manner. Long terminal repeat and env sequences appeared to influence lymphomogenic potential by determining the extent of bursal infection within the first 2 to 3 weeks of life. This would suggest that bursal but not postbursal stem cells are targets for avian leukosis virus-induced lymphomogenesis. The induction of neutralizing antibody had no obvious influence on the incidence of lymphoma.  相似文献   

6.
Using our previously described Haydée semipackaging cell line (F. L. Cosset, C. Legras, Y. Chebloune, P. Savatier, P. Thoraval, J. L. Thomas, J. Samarut, V. M. Nigon, and G. Verdier, J. Virol. 64:1070-1078, 1990) which produces avian leukosis virus gag and pol proteins, we have constructed packaging cells with subgroups B, C, and E envelope specificities. This allows us to produce helper-free avian leukosis virus particles carrying the lacZ reporter gene and the A, B, C, or E subgroup specificities. Titers of the recombinant lacZ virus are shown to be dependent upon the type of the env subgroup and the target avian cell.  相似文献   

7.
Subgroup D avian sarcoma and leukosis viruses can penetrate a variety of mammalian cells in addition to cells from their natural host, chickens. Sequences derived from the gp85-coding domain within the env gene of a mammal-tropic subgroup D virus (Schmidt-Ruppin D strain of Rous sarcoma virus [SR-D RSV]) and a non-mammal-tropic subgroup B virus (Rous-associated virus type 2) were recombined to map genetic determinants that allow penetration of mammalian cells. The following conclusions were based on host range analysis of the recombinant viruses. (i) The determinants of gp85 that result in the mammal tropism phenotype of SR-D RSV are encoded within the 160 codons that lie 3' of codon 121 from the corresponding amino terminus of the gp85 protein. (ii) Small linear domains of the SR-D RSV gp85-coding domain placed in the subgroup B background did not yield viruses with titers equal to that of the subgroup D virus in a human cell line. (iii) Recombinant viruses that contained subgroup D sequences within the hr1 variable domain of gp85 showed modest-to-significant increases in infectivity on human cells relative to chicken cells. A recombinant virus that contained three fortuitous amino acid substitutions in the gp85-coding domain was found to penetrate the human cell line and give a titer similar to that of the subgroup D virus. In addition, we found that the subgroup D virus, the mutant virus, and recombinant viruses with an increased mammal tropism phenotype were unstable at 42 degrees C. These results suggest that the mammal tropism of the SR-D strain is not related to altered receptor specificity but rather to an unstable and fusogenic viral glycoprotein. A temperature sensitivity phenotype for infectivity of mammalian cells was also observed for another mammal-tropic avian retrovirus, the Bratislava 77 strain of RSV, a subgroup C virus, but was not seen for any other avian retrovirus tested, strengthening the correlation between mammal tropism and temperature sensitivity.  相似文献   

8.
Adsorption and penetration of retroviruses into eucaryotic cells is mediated by retroviral envelope glycoproteins interacting with host receptors. Recombinant avian leukosis viruses (ALVs) differing only in envelope determinants that interact with host receptors for subgroup A or E ALVs have been found to have unexpectedly distinctive patterns of tissue-specific replication. Recombinants of both subgroups were highly expressed in bursal lymphocytes as well as in cultured chicken embryo fibroblasts. In contrast, the subgroup A but not subgroup E host range allowed high levels of expression in skeletal muscle, while subgroup E but not subgroup A envelope glycoproteins permitted efficient replication in the thymus. A subgroup B virus (RAV-2), like the subgroup E viruses, demonstrated a distinct bursal and thymic tropism, further supporting the theory that genes encoding receptors for subgroup B and E viruses are allelic. The source of long terminal repeats (LTRs) or adjacent sequences also influenced tissue-specific replication, with the LTRs from endogenous virus RAV-0 supporting efficient replication in the bursa and thymus but not in skeletal muscle. These results indicate that ALV env and LTR regions are responsible for unexpectedly distinctive tissue tropisms.  相似文献   

9.
Specificity of avian leukosis virus-induced hyperlipidemia   总被引:2,自引:0,他引:2       下载免费PDF全文
Rous-associated virus 7 (RAV-7) is a subgroup C avian leukosis virus which does not transform cells in vitro or carry an oncogene. When injected into 1-day-old hatched chicks, RAV-7 causes a low incidence of lymphoid leukosis after a latent period of several months. In contrast, infection of 10-day-old chicken embryos with RAV-7 leads to a disease syndrome characterized by stunting, obesity, atrophy of the bursa and the thymus, high triglyceride and cholesterol levels, reduced thyroxine levels, and increased insulin levels (Carter et al., Infect. Immun. 39:410-422, 1983; J.K. Carter and R.E. Smith, Infect. Immun. 40:795-805, 1983). Histopathological examination of tissues from affected chicks revealed an accumulation of lipid in the liver and an extensive infiltration of the thyroid and pancreas by lymphoblastoid cells. In the present investigation, the subgroup specificity of this syndrome was investigated. Other subgroup C avian leukosis viruses (transformation-defective B77, transformation-defective Prague C strain of Rous sarcoma virus, and RAV-49) caused stunting, infiltration of the thyroid and pancreas, increased liver weights, decreased thyroxine levels, and increased insulin levels, but they did not cause a uniform, profound increase in triglyceride and cholesterol levels. Avian leukosis viruses of subgroup A [myeloblastosis-associated virus 1 causing osteopetrosis [MAV-1(O)] and RAV-1], subgroup B [MAV-2(O), MAV-2 causing nephroblastoma [MAV-2(N)], and RAV-2], subgroup D (RAV-50), and subgroup F (ring-necked pheasant virus and RAV-61) did not cause a syndrome identical to that induced by RAV-7. All of the viruses examined induced some stunting and a reduction in thyroxine levels which correlated with the stunting. The two subgroup F viruses caused an infiltration of the thyroid which may have been secondary to severe lung involvement. We conclude that the RAV-7 syndrome is unique, particularly in the induction of a hyperlipidemia.  相似文献   

10.
We have recently shown that a newly isolated avian sarcoma virus, UR2, is defective in replication and contains no sequences homologous to the src gene of Rous sarcoma virus. In this study, we analyzed the genetic structure and transforming sequence of UR2 by oligonucleotide fingerprinting. The sizes of the genomic RNAs of UR2 and its associated helper virus, UR2AV, were determined to be 24S and 35S, respectively, by sucrose gradient sedimentation. The molecular weight of the 24S UR2 genomic RNA was estimated to be 1.1 x 10(6), corresponding to 3,300 nucleotides, by gel electrophoresis under the native and denatured conditions. RNase T1 oligonucleotide mapping indicated that UR2 RNA contains seven unique oligonucleotides in the middle of the genome and shares eight 5'- and six 3'-terminal oligonucleotides with UR2AV RNA. From these data, we estimated that UR2 RNA contains a unique sequence of about 12 kilobases in the middle of the genome, and contains 1.4 and 0.7 kilobases of sequences shared with UR2AV RNA at the 5' and 3' ends, respectively. Partial sequence analysis of the UR2-specific oligonucleotides by RNase A digestion revealed that there are no homologous counterparts to these oligonucleotides in the RNAs of other avian sarcoma and acute leukemia viruses studied to date. UR2-transformed non-virus-producing cells contain a single 24S viral RNA which is most likely the message coding for the transforming protein of UR2. On the basis of the uniqueness of the transforming sequence, we concluded that UR2 is a new member of the defective avian sarcoma viruses.  相似文献   

11.
The genome structure of defective, oncogenic avian reticuloendotheliosis virus (REV) was studied by heteroduplex mapping between the full-length complementary DNA of the helper virus REV-T1 and the 30S REV RNA. The REV genome (5.5 kilobases) had a deletion of 3.69 kilobases in the gag-pol region, confirming the genetic defectiveness of REV. In addition, REV lacked the sequences corresponding to the env gene but contained, instead, a contiguous stretch (1.6 to 1.9 kilobases) of the specific sequences presumably related to viral oncogenicity. Unlike those of other avian acute leukemia viruses, the transformation-specific sequences of REV were not contiguous with the gag-pol deletion. Thus, REV has a genome structure similar to that of a defective mink cell focus-inducing virus or a defective murine sarcoma virus. An additional class of heteroduplex molecules containing the gag-pol deletion and two other smaller deletion loops was observed. These molecules probably represented recombinants between the oncogenic REV and its helper virus.  相似文献   

12.
HBI is a recombinant avian retrovirus with novel pathogenic properties that was derived from the myc-containing virus MC29. In contrast to MC29, which causes endotheliomas in chickens, HBI induces lymphoid tumors. The results of molecular cloning and nucleotide sequencing of HBI reported here show that the virus contains sequences derived from both c-myc and ring-neck pheasant virus, in addition to MC29. The 3' half of the myc gene was largely replaced by c-myc sequences, and most of the long terminal repeat and gag regions were replaced by ring-neck pheasant virus sequences. The long terminal repeat contained a triplicate sequence which was homologous to the core enhancer sequence of the simian virus 40 72-base-pair repeat. The significance of these changes in relation to the unusual biological properties of the virus are discussed.  相似文献   

13.
We recently reported the identification of sequences in the chicken genome that show over 95% identity to the novel envelope gene of the subgroup J avian leukosis virus (S. J. Benson, B. L. Ruis, A. M. Fadly, and K. F. Conklin, J. Virol. 72:10157-10164, 1998). Based on the fact that the endogenous subgroup J-related env genes were associated with long terminal repeats (LTRs), we concluded that these LTR-env sequences defined a new family of avian endogenous viruses that we designated the ev/J family. In this report, we have further characterized the content and expression of the ev/J proviruses. The data obtained indicate that there are between 6 and 11 copies of ev/J proviruses in all chicken cells examined and that these proviruses fall into six classes. Of the 18 proviruses examined, all share a high degree of sequence identity and all contain an internal deletion that removes all of the pol gene and various amounts of gag and env gene sequences. Sequencing of the gag genes, LTRs, and untranslated regions of several ev/J proviruses revealed a high level of identity between isolates, indicating that they have not undergone significant sequence variation since their introduction into the avian germ line. Although the ev/J gag gene showed a relatively weak relationship (46% identity and 61% similarity at the amino acid level) to that of the avian leukosis-sarcoma virus family, it retains several sequences of demonstrated importance for virus assembly, budding, and/or infectivity. Finally, evidence was obtained that at least some members of the ev/J family are expressed and, if translated, could encode Gag- and Env-related polypeptides.  相似文献   

14.
Activation of oncogenicity of the c-rel proto-oncogene.   总被引:14,自引:2,他引:12       下载免费PDF全文
Reticuloendotheliosis virus strain T (Rev-T) induces a lethal lymphoma in young birds and transforms avian lymphoid cells in vitro. The transforming gene of Rev-T, v-rel, was derived from the turkey proto-oncogene c-rel. Comparison of the nucleotide sequences of v-rel and c-rel indicates that in addition to several internal amino acid changes relative to c-rel, p59v-rel has amino acid sequences at both ends derived from the reticuloendotheliosis virus strain A-related virus env gene (K. C. Wilhelmsen, K. Eggleton, and H. M. Temin, J. Virol. 52:172-182, 1984). In this report, the v-rel sequences important for transformation were defined by constructing recombinant retroviruses in which c-rel sequences replaced the analogous v-rel sequences. These recombinant viruses expressing chimeric proteins were tested for their ability to transform spleen cells in vitro and to induce tumors in young chickens. Activation of the oncogenicity of c-rel in Rev-T required alteration of the amino terminus and the central region of the protein. Deletion of the noncoding sequences 3' to c-rel and of most of the helper virus-related env sequences was necessary for the formation of Rev-T.  相似文献   

15.
An avian leukosis virus-based packaging cell line was constructed from the genome of the Rous-associated virus type 1. The gag, pol, and env genes were separated on two different plasmids; the packaging signal and the 3' long terminal repeat were removed. On a plasmid expressing the gag and pol genes, the env gene was replaced by the hygromycin resistance gene. The phleomycin resistance gene was inserted in the place of the gag-pol genes on a plasmid expressing the env gene. The plasmid containing the gag, pol, and Hygror genes was transfected into QT6 cells. Clones that produced high levels of p27gag were transfected with the plasmid containing the Phleor and env genes. Clones that produced high levels of env protein (as measured by an interference assay) were tested for their ability to package NeoR-expressing replication-defective vectors (TXN3'). One of the clones (Isolde) was able to transfer the Neo+ phenotype to recipient cells at a titer of 10(5) resistance focus-forming units per ml. Titers of supernatants of cells infected with Rous-associated virus type 1 prior to transfection by Neor vectors were similar. Tests for recombination events that might result in intact helper virus showed no evidence for the generation of replication-competent virus. The use of selectable genes inserted next to the viral genes to generate high-producer packaging cell lines is discussed.  相似文献   

16.
Rous-associated virus 0 (RAV-0), an endogenous chicken virus, does not cause disease when inoculated into susceptible domestic chickens. An infectious unintegrated circular RAV-0 DNA was molecularly cloned, and the sequence of the long terminal repeat (LTR) and adjacent segments was determined. The sequence of the LTR was found to be very similar to that of replication-defective endogenous virus EV-1. Like the EV-1 LTR, the RAV-0 LTR is smaller (278 base pairs instead of 330) than the LTRs of the oncogenic members of the avian sarcoma virus-avian leukosis virus group. There is, however, significant homology. The most striking differences are in the U(3) region of the LTR, and in this region there are a series of small segments present in the oncogenic viruses which are absent in RAV-0. These differences in the U(3) region of the LTR could account for the differences in the oncogenic potential of RAV-0 and the avian leukosis viruses. I also compared the regions adjacent to the RAV-0 LTR with the available avian sarcoma virus sequences. A segment of approximately 200 bases to the right of the LTR (toward gag) is almost identical in RAV-0 and the Prague C strain of Rous sarcoma virus. The segment of RAV-0 which lies between the end of the env gene and U(3) is approximately 190 bases in length. Essentially this entire segment is present between env and src in the Schmidt-Ruppin A strain of Rous sarcoma virus. Most of this segment is also present between env and src in Prague C; however, in Prague C there is an apparent deletion of 40 bases in the region adjacent to env. In Schmidt-Ruppin A, but not in Prague C, about half of this segment is also present between src and the LTR. This arrangement has implications for the mechanism by which src was acquired. The region which encoded the gp37 portion of env appears to be very similar in RAV-0 and the Rous sarcoma viruses. However, differences at the very end of env imply that the carboxy termini of RAV-0, Schmidt-Ruppin A, and Prague C gp37s are significantly different. The implications of these observations are considered.  相似文献   

17.
Unlike other RNA tumor viruses, avian leukosis viruses (which cause lymphomas and occasionally other neoplasms) lack discrete "transforming genes". We have analyzed the virus-related DNA and RNA of avian leukosis virus (ALV)-induced tumors in an attempt to gain insight into the mechanism of ALV oncogenesis. Our results show that viral gene products are not required for maintenance of neoplastic transformation. Primary and metastatic tumors are clonal and thus presumably derived from a single infected cell. Most importantly, tumors from different birds have integration sites in common. Tumor cells synthesize discrete new poly(A) RNAs consisting of viral sequences covalently linked to cellular sequences. These RNA species are expressed at high levels in tumor cells. Our results suggest that in lymphoid tumors, an ALV provirus is integrated adjacent to a specific cellular gene, and the insertion of the viral promoter adjacent to this gene results in its enhanced expression, leading to neoplasia. These results have potentially important implications for the mechanism of non-viral carcinogenesis.  相似文献   

18.
Using less stringent hybridization conditions and cloned viral DNA probes representing the avian sarcoma virus gag, pol, env, and long terminal repeat (LTR) gene sequences, we detected related sequences in two avian species purportedly lacking all endogenous avian leukosis viruses, the ev- chicken and the Japanese quail. The blot hybridization patterns obtained with the various probes suggest the presence of between 40 and 100 copies of retrovirus-related sequences in the genomes of these two species. An ev- chicken genomic DNA library was prepared and screened with gag-specific and pol-specific DNA probes. Several different clones were obtained from this library and characterized. Analysis of these clones revealed that the retrovirus-related gene sequences are linked in the order LTR-gag-pol-env-LTR, a structure indicative of a complete provirus. These data indicate the presence of previously unidentified endogenous retrovirus species in avian cells, suggesting that under the appropriate conditions of hybridization additional, more distantly evolved families of endogenous retrovirus genes may be identified in vertebrate species.  相似文献   

19.
We have constructed hybrid retrovirus packaging cell lines that express the gibbon ape leukemia virus env and the Moloney murine leukemia virus gag-pol proteins. These cells were used to produce a retrovirus vector at over 10(6) CFU/ml, with a host range that included rat, hamster, bovine, cat, dog, monkey, and human cells. The gag-pol and env expression plasmids were separately transfected to reduce the potential for helper virus production, which was not observed. The NIH 3T3 mouse cells from which the packaging lines were made are not infectable by gibbon ape leukemia virus; thus, the generation and spread of possible recombinant viruses in the packaging cells is greatly reduced. These simian virus-based packaging cells extend the host range of currently available murine and avian packaging cells and should be useful for efficient gene transfer into higher mammals.  相似文献   

20.
During serial passages of an avian leukosis virus (the transformation-defective, src deletion mutant of Bratislava 77 avian sarcoma virus, designated tdB77) in chicken embryo fibroblasts, viruses which transformed chicken embryo fibroblasts in vitro emerged. Chicken embryo fibroblasts infected with these viruses (SK770 and Sk780) had a distinctive morphology, formed foci in monolayer cultures, and grew independent of anchorage in semisolid agar. Bone marrow cells were not transformed by these viruses. Another virus (SK790) with similar properties emerged during serial subcultures of chicken embryo fibroblasts after a single infection with tdB77. The 50S to RNAs isolated from these viruses contained a tdB77-sized genome (7.6 kilobases), 8.7- and 5.7-kilobase RNAs, and either a 4.1-kilobase RNA or a 4.6-kilobase RNA. These RNAs did not hybridize with cDNA's representing the src, erb, mac, and myb genes of avian acute transforming viruses. Cells transformed by any one of the Sk viruses (SK770, SK780, or SK790) synthesized two novel gag-related polyproteins having molecular weights of 110,000 (p110) and 125,000 (p125). We investigated the compositions of these proteins with monospecific antiviral protein sera. We found that p110 was a gag-pol fusion protein which contained antigenic determinants, leaving 49,000 daltons which was antigenically unrelated to the structural and replicative proteins of avian leukosis viruses. An analysis of the SK viral RNAs with specific DNA probes indicated that the 5.7-kilobase RNA contained gag sequences but lacked pol sequences and, therefore, probably encoded p125. The transforming ability, the deleted genome, and the induced polyproteins of the SK viruses were reminiscent of the properties of several replication-defective acute transforming viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号