首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
1. The -->H(+)/e(-) quotients for proton release from mitochondria associated with electron flow from succinate and duroquinol to O(2), ferricyanide or ferricytochrome c, and from NNN'N'-tetramethyl-p-phenylenediamine+ascorbate to O(2), were determined from rate measurements of electron flow and proton translocation. 2. Care was taken to avoid, or to take into account, unrelated electron flow and proton translocation, which might take place in addition to the oxido-reductions that were the subject of our analysis. Spectrophotometric techniques were chosen to provide accurate measurement of the rate of consumption of oxidants and reductants. The rate of proton translocation was measured with fast pH meters with a precision of 10(-3) pH unit. 3. The -->H(+)/O quotient for succinate or duroquinol oxidation was, at neutral pH, 4, when computed on the basis of spectrophotometric determinations of the rate of O(2) consumption or duroquinol oxidation. Higher -->H(+)/O quotients for succinate oxidation, obtained from polarographic measurements of O(2) consumption, resulted from underestimation of the respiratory rate. 4. The -->H(+)/2e(-) quotient for electron flow from succinate and duroquinol to ferricyanide or ferricytochrome c ranged from 3.9 to 3.6. 5. Respiration elicited by NNN'N'-tetramethyl-p-phenylenediamine+ascorbate by antimycin-inhibited mitochondria resulted in extra proton release in addition to that produced for oxidation of ascorbate to dehydroascorbate. Accurate spectrophotometric measurement of respiration showed that the -->H(+)/e(-) ratio was only 0.25 and not 0.7-1.0 as obtained with the inadequate polarographic assay of respiration. Proton release was practically suppressed when mitochondria were preincubated aerobically in the absence of antimycin. Furthermore, the rate of scalar proton consumption for water production was lower than that expected from the stoicheiometry. Thus the extra proton release observed during respiration elicited by NNN'N'-tetramethyl-p-phenylenediamine+ascorbate is caused by oxidation of endogenous hydrogenated reductants. 6. It is concluded that (i) the -->H(+)/O quotient for the cytochrome system is, at neutral pH, 4 and not 6 or 8 as reported by others; (ii) all the four protons are released during electron flow from quinol to cytochrome c; (iii) the oxidase transfers electrons from cytochrome c to protons from the matrix aqueous phase and does not pump protons from the matrix to the outer aqueous phase.  相似文献   

2.
A direct kinetic analysis is presented of rapid proton-releasing reactions at the outer or C-side of the membrane, in ox heart and rat liver mitochondria, associated with aerobic oxidation of reduced terminal respiratory carriers in the presence of antimycin. Valinomycin plus K+ enhances the rate of cytochrome c oxidation and the rate and extent of H+ release. In the presence of valinomycin the leads to H+/e- ratio, computed on the basis of total electron flow from respiratory carriers to oxygen, varies with pH, remaining always lower than 1, and is unaffected by N-ethylmaleimide. 2-Heptyl-4-hydroxyquinoline N-oxide and 5-(n-undecyl)-6-hydroxy-4,7-dioxobenzothiazole, at concentrations which inhibit in the presence of antimycin the oxygen-induced reduction of b cytochromes, cause also a marked depression of the H+ release associated with aerobic oxidation of terminal respiratory carriers. Aerobic oxidation of the cytochrome system in mitochondria and of isolated b-c1 complex and cytochrome c oxidase results in scalar proton release from ionizable groups (redox Bohr effects). In mitochondria and submitochondrial particles, about 70% of the oxidoreductions of the components of the cytochrome system are linked to scalar proton transfer by ionizable groups. In isolated b-c1 complex scalar proton transfer, resulting from redox Bohr effect, amounts to 0.9H+ per Fe-S protein (190 muT). In isolated cytochrome c oxidase, Bohr protons amount to 0.8 per haem a + a3. The results presented indicate that the H+ release from mitochondria during oxidation of terminal respiratory carriers derives from residual antimycin-insensitive electron flow in the quinone-cytochrome c span and from redox Bohr effects in the b-c1 complex and cytochrome c oxidase. There is no sign of proton pumping by cytochrome oxidase during its transition from the reduced to the active 'pulsed' state and the first one or two turnovers.  相似文献   

3.
The possibility of direct oxidation of external NADH in rat liver mitochondria and of the inner membrane potential generation in this process is still not clear. In the present work, the energy-dependent swelling of mitochondria in the medium containing valinomycin and potassium acetate was measured as one of the main criteria of the proton-motive force generation by complex III, complex IV, and both complexes III and IV of the respiratory chain. Mitochondria swelling induced by external NADH oxidation was compared with that induced by succinate or ferrocyanide oxidation, or by electron transport from succinate to ferricyanide. Mitochondria swelling, nearly equal to that promoted by ferrocyanide oxidation, was observed under external NADH oxidation, but only after the outer mitochondrial membrane was ruptured as a result of the swelling-contraction cycle, caused by succinate oxidation and its subsequent inhibition. In this case, significantly accelerated intermembrane electron transport and well-detected inner membrane potential generation, in addition to mitochondria swelling, were also observed. Presented results suggest that exogenous NADH and cytochrome c do not support the inner membrane potential generation in intact rat liver mitochondria, because the external NADH-cytochrome c reductase system, oriented in the outer mitochondrial membrane toward the cytoplasm, is inaccessible for endogenous cytochrome c reduction; as well, the inner membrane cytochrome c oxidase is inaccessible for exogenous cytochrome c oxidation.  相似文献   

4.
Membrane-impermeant redox compounds ferricyanide and horse heart ferrocytochrome c acted as electron acceptor and donor, respectively, for intact cells or spheroplasts of Anacystis nidulans (Synechococcus ATCC 27144) in the dark. The anaerobic reduction of ferricyanide was faster than aerobic reduction. KCN significantly enhanced the reaction under aerobic conditions. Light did not influence ferricyanide reduction. The oxidation of exogenous ferrocytochrome c was oxygen-dependent and inhibited by KCN. Either type of redox reaction was accompanied by vectorial proton translocation out of the cells. Arrhenius plots for the temperature dependence of both ferricyanide reduction and cytochrome c oxidation gave one distinct break point reflecting the lipid phase transition temperature of the plasma membrane. The results are presented as evidence for a respiratory chain in the plasma membrane of A. nidulans.  相似文献   

5.
A study is presented of the characteristics of redox-linked proton translocation in the b-c1 complex isolated from beef-heart mitochondria and reconstituted into phospholipid vesicles. Measurements of the H+/e- stoichiometry, with three different methods, show that four protons are released from the vesicles per 2e- flowing from quinols to cytochrome c, two of these protons formally deriving from scalar oxidation of quinols by cytochrome c. This H+/e- stoicheiometry is independent of the initial redox state of the b-c1 complex (fully reduced or oxidized) and the rate of electron flow through the complex. It does not change in the pH range 6.0 - 7.2, but declines to 1.5 going with pH from 7.2 - 8.3. This decrease is accompanied by enhancement of the rate of electron flow in the coupled state. Collapse of delta psi effected by valinomycin addition to turning-over b-c1 vesicles resulted in substantial oxidation of cytochrome b-566 and comparable reduction of cytochrome c1, with little oxidation of cytochrome b-562. Nigericin alone had no effect on the steady-state redox levels of b and c cytochromes. Its addition in the presence of valinomycin caused oxidation of b cytochromes but no change in the redox state of cytochrome c1. Valinomycin alone caused a marked enhancement of the rate of electron flow through the complex. Nigericin alone was ineffective, but caused further stimulation of electron flow when added in the presence of valinomycin. The data presented are discussed in terms of two mechanisms: the Q cycle and a model based on combination of protonmotive catalysis by special bound quinone and proton conduction along pathways in the apoproteins.  相似文献   

6.
A study is presented of the kinetics and stoichiometry of fast proton translocation associated to aerobic oxidation of components of the mitochondrial respiratory chain. 1. Aerobic oxidation of ubiquinol and b cytochromes is accompanied in EDTA particles, obtained by sonication of beef-heart mitochondria, by synchronous proton uptake. 2. The rapid proton uptake associated to oxidation and b cytochromes is greatly stimulated by valinomycin plus K+, but is unaffected by carbonyl cyanide p-trifluoromethoxyphenylhydrazone. 3. 4 gion H+ are taken up per mol ubiquinol oxidized by oxygen. This H+/2e- ratio, measured in the rapid anaerobic-aerobic transition of the particles is unaffected by carbonyl cyanide p-trifluoromethoxyphenylhydrazone. 4. Intact mitochondria aerobic oxidation of oxygen-terminal electron carriers is accompanied by antimycin-insensitive synchronous proton release, oxidation of ubiquinol and reduction of b cytochromes. The amount of protons released is in excess with respect to the amount of ubiquinol oxidized. 5. It is concluded that electron flow along complex III, from ubiquinol to cytochrome c, is directly coupled to vectorial proton translocation. The present data suggest that there exist(s) between ubiquinol and cytochrome c one (or two) respiratory carrier(s), whose oxido-reduction is directly linked to effective transmembrane proton translocation.  相似文献   

7.
8.
In this paper a study is presented of the characteristics of redox-linked proton ejection exhibited by isolated beef-heart cytochrome c oxidase incorporated in asolectin vesicles. The enzyme was 90% oriented 'right-side out' as in the mitochondrial membrane. The effects on the H+/e- stoichiometry of the modalities of activation of electron flow, the pH of the medium and its ionic composition were investigated. The results obtained show that, whilst ferrocytochrome c pulses of the aerobic oxidase vesicles at neutral pH and in the presence of saturating concentrations of valinomycin and K+ to ensure charge compensation produced H+/e- ratios around 1 (as has been shown previously), oxygen pulses of reduced anaerobic vesicles supplemented with cytochrome c, gave H+/e- ratios around 0.3. The H+/e- ratios exhibited, with both reductant and oxidant pulses, a marked pH dependence. Maximum values were observed at pH 7.0-7.7, which decreased to negligible values at acidic pH with apparent pKa of 6.7-6.3. Mg2+ and Ca2+ caused a marked depression of the H+/e- ratio, which in the presence of these cations and after a few ferrocytochrome pulses, became negligible. Analysis of cytochrome c oxidation showed that the modalities of activation of electron flow and divalent cations exerted profound effects on the kinetics of cytochrome c oxidation by oxidase vesicles. The observations presented seem to provide interesting clues for the nature and mechanism of redox-linked proton ejection in reconstituted cytochrome c oxidase.  相似文献   

9.
Proton pump coupled to cytochrome c oxidase in Paracoccus denitrificans   总被引:12,自引:0,他引:12  
The proton translocating properties of cytochrome c oxidase in whole cells of Paracoccus denitrificans have been studied with the oxidant pulse method. leads to H+/2e- quotients have been measured with endogenous substrates, added methanol and added ascorbate (+TMPD) as reductants, and oxygen and ferricyanide as oxidants. It was found that both the observed leads to H+/O with ascorbate (+TMPD) as reductant, and the differences in proton ejection between oxygen-and ferricyanide pulses, with endogenous substrates or added methanol as a substrate, indicate that the P. denitrificans cytochrome c oxidase translocates protons with a stoichiometry of 2H+/2e-. The results presented in this and previous papers are in good agreement with recent findings concerning the mitochondrial cytochrome c oxidase, and suggest unequal charge separation by different coupling segments of the respiratory chain of P. denitrificans.  相似文献   

10.
A purified cytochrome b-c1 complex isolated from yeast mitochondria has been reconstituted into proteoliposomes. The reconstituted comp]lex catalyzed antimycin A-sensitive electron transfer from different analogues of coenzyme Q to cytochrome c. The reconstituted complex was also capable of energy conservation as indicated by uncoupler-stimulated rates of electron transfer, electrogenic proton ejection, and reversed electron flow from cytochrome b to coenzyme Q2 in the presence of antimycin A driven by a valinomycin-induced K+-diffusion potential (negative inside). Close to four protons were ejected per two electrons transported through the reconstituted b-c1 complex with ferricyanide as an artificial and impermeable electron acceptor.l The H+/2e- ratio decreased to two in the presence of the proton-conducting agent, carbonyl cyanide m-chlorophenylhydrazone. The same processes were studied in parallel in energy-conserving site 2 of rat liver mitochondria with similar results. In the reconstituted b-c1 complex, dicyclohexylcarbodiimide (DCCD) blocked the function of the electrogenic proton translocating device in the forward direction of proton ejection as well as in the backwards direction, measured as reversed electron flow from cytochrome b to coenzyme Q2 driven by a K+-diffusion potential. The primary effect of DCCD is localized on the proton ejection process, as the low proton conductance of the proteoliposome membrane was totally preserved after DCCD treatment.  相似文献   

11.
The degree of involvement of cyanide-resistant alternative oxidase in the respiration of Yarrowia lipolytica mitochondria was evaluated by comparing the rate of oxygen consumption in the presence of cyanide, which shows the activity of the cyanide-resistant alternative oxidase, and the oxidation rate of cytochrome c by ferricyanide, which shows the activity of the main cytochrome pathway. The oxidation of succinate by mitochondria in the presence of ferricyanide and cyanide was associated with oxygen consumption due to the functioning of the alternative oxidase. The subsequent addition of ADP or FCCP (an uncoupler of oxidative phosphorylation) completely inhibited oxygen consumption by the mitochondria. Under these conditions, the inhibition of the alternative oxidase by benzohydroxamic acid (BHA) failed to affect the reduction of ferricyanide at the level of cytochrome c. BHA did not influence the rate of ferricyanide reduction by the cytochrome pathway occurring in controlled state 4, nor could it change the phosphorylation quotient ATP/O upon the oxidation of various substrates. These data indicate that the alternative system is unable to compete with the cytochrome respiratory chain for electrons. The alternative oxidase only transfers the electrons that are superfluous for the cytochrome respiratory chain.  相似文献   

12.
The purified two-subunit cytochrome c oxidase of Paracoccus denitrificans was reconstituted into phospholipid vesicles having a high internal buffering capacity and exhibiting a respiratory control index greater than 6.6. With these proteoliposomes, pH changes of the suspending medium were monitored in response to reductant pulses in the presence of valinomycin and potassium. When reduced cytochrome c was added to allow for a limited number of turnovers (2-12), a net acidification of the extravesicular space could be observed. This apparent proton ejection by the vesicles was abolished by inhibition of the oxidase with azide, by bypassing the oxidase with ferricyanide, or by preventing charge compensation by omitting valinomycin. Addition of uncoupler led to an alkalinization, rather than an acidification, of the extravesicular space in response to reduced cytochrome c. We thus conclude that cytochrome c oxidase of P. denitrificans is a proton pump. Under the conditions described here, an apparent stoichiometry of 0.6 proton ejected/electron was obtained by extrapolation to zero turnovers.  相似文献   

13.
Both oleic acid and oleate hydroperoxide at concentrations below 200 nmol/mg asolectin remarkably depressed the proton pumping of cytochrome c oxidase reconstituted into liposomes but did not affect the respiratory control ratio. The inhibitory effect was comparable to that of N,N'-dicyclohexylcarbodiimide. Oleate hydroperoxide in the vesicles was reduced by ferrocytochrome c in the absence of cytochrome oxidase and converted to the hydroxy fatty acid. This non-enzymatic oxidation of ferrocytochrome c affected slightly the proton pumping and the cytochrome c oxidation by liposomal cytochrome oxidase. A physiological role of ferrocytochrome c in catabolism of the hydroperoxide of fatty acids is thus suggested.  相似文献   

14.
M Wikstr?m  R Casey 《FEBS letters》1985,183(2):293-298
Several reports in the past have dealt with the oxidation of cytochrome c added to suspensions of rat liver mitochondria. Yet, it is generally believed that the cytochrome cannot penetrate the outer membrane. Probably it has been assumed that the permeability of the outer membrane to cytochrome c is very low but finite, and that fast oxidation may be observed if time is allowed for sufficient penetration before initiation of electron flow. Here we show that this view is false. The main fraction of rat liver mitochondria, as isolated by conventional procedures, does not catalyse any significant oxidation of added cytochrome c, even after prolonged incubation. The observed appreciable oxidation of added cytochrome c is catalysed by a very small fraction (5-12%) of the mitochondria that apparently has a damaged outer membrane. Consequently, the turnover of cytochrome oxidase is very high in this fraction during oxidation of added cytochrome c. This finding readily explains why Moyle and Mitchell (e.g., FEBS Lett. 88 (1978) 268-272; 90 (1978) 361-365) have failed to observe proton translocation by cytochrome oxidase during oxidation of ferrocytochrome c added to rat liver mitochondria, which has been their main reason for rejecting the proton-pumping function of cytochrome oxidase.  相似文献   

15.
The existence of a proton pump associated with bovine cytochrome c oxidase (EC 1.9.3.1) has over the last few years been a matter of considerable dispute. In an attempt to resolve some of the problems with the measuring system we have synthesized fluorescein-phosphatidylethanolamine which when reconstituted with cytochrome c oxidase into phospholipid vesicles provided a reliable indicator of the intravesicular pH. It was observed that cytochrome c oxidase catalyzed the abstraction of almost 2 protons from the intravesicular medium/molecule of ferrocytochrome c oxidized. In parallel experiments whereby the extravesicular pH was measured with an electrode it was found that the enzyme appeared to be responsible for the appearance of almost 1.0 proton/molecule of ferrocytochrome c oxidized. Taken together these data unequivocally demonstrate that cytochrome c oxidase behaves as a proton pump. Furthermore, the other proton which was abstracted is believed to be used for the process of the reduction of oxygen. Similar experiments were performed with a cytochrome c oxidase preparation which was devoid of subunit III. Under these circumstances the enzyme appeared to be unable to translocate protons across the vesicular membrane but was competent to abstract protons from the intravesicular medium for the reduction of oxygen.  相似文献   

16.
Aflatoxins B1, B2, G1, G2, and M1 have been evaluated for activity toward cytochrome oxidase in isolated rat liver mitochondria employing ferrocytochrome c and p-phenylene diamine as reductants. The aflatoxins inhibited the cytochrome oxidase activity to a greater extent when monitored by O2 uptake measurements than by substrate oxidation. AFG2 and AFM1 were the most potent (50-70%). Using oligomycin and 2,4-DNP as respiratory inhibitor and uncoupler, respectively, the aflatoxins appear to inhibit e- rather than energy transfer reactions. These toxins did not uncouple cytochrome oxidase activity.  相似文献   

17.
The transient kinetics of proton pumping and the electron transfer properties of cytochrome oxidase inserted into small unilamellar vesicles have been investigated by stopped-flow spectrophotometry. In the presence of valinomycin, proton pumping and cytochrome c oxidation by cytochrome oxidase are synchronous up to rate constants of approximately 9 sec-1. Moreover, the enzyme depleted of subunit III ("three-less oxidase") was also shown to pump protons, although with a significantly smaller stoichiometry. Thus, subunit III is not the only (or even the main) proton channel, although it may be involved in the regulation of activity. The kinetics of cytochrome c oxidation by COV in the absence and in the presence of ionophores have been investigated. Analysis of the time course of the process in the transient and steady state phases indicates that the onset of control by the electrochemical gradient follows the transfer of four electrons, i.e., one complete turnover of the oxidase. Two possible alternative interpretations for the control of the turnover phase are presented and discussed.  相似文献   

18.
The kinetics of electron transfer between cytochrome-c oxidase and ruthenium hexamine has been characterized using the native enzyme or its cyanide complex either solubilized by detergent (soluble cytochrome oxidase) or reconstituted into artificial phospholipid vesicles (cytochrome oxidase-containing vesicles). Ru(NH3)2+6 (Ru(II] reduces oxidized cytochrome a, following (by-and-large) bimolecular kinetics; the second order rate constant using the cyanide complex of the enzyme is 1.5 x 10(6) M-1 s-1, for the enzyme in detergent, and slightly higher for COV. In the case of COV the kinetics are not affected by the addition of ionophores. Upon mixing fully reduced cytochrome oxidase with oxygen (in the presence of excess reductants), the oxidation leading to the pulsed enzyme is followed by a steady state phase and (eventually) by complete re-reduction. When the concentrations of dioxygen and oxidase are sufficiently low (micromolar range), the time course of oxidation can be resolved by stopped flow at room temperature, yielding an apparent bimolecular rate constant of 5 x 10(7) M-1 s-1. After exhaustion of oxygen and end of steady state, re-reduction of the pulsed enzyme by the excess Ru(II) is observed; the concentration dependence shows that the rate of re-reduction is limited at 3 s-1 in detergent; this limiting value is assigned to the intramolecular electron transfer process from cytochrome a-Cua to the binuclear center. Using the reconstituted enzyme, the internal electron transfer step is sensitive to ionophores, increasing from 2-3 to 7-8 s-1 upon addition of valinomycin and carbonyl cyanide m-chlorophenylhydrazone. This finding indicates for the first time an effect of the electrochemical potential across the membrane on the internal electron transfer rate; the results are compared with expectations based on the hypothesis formulated by Brunori et al. (Brunori, M., Sarti, P., Colosimo, A., Antonini, G., Malatesta, F., Jones, M.G., and Wilson, M.T. (1985) EMBO J. 4, 2365-2368), and their bioenergetic relevance is discussed with reference to the proton pumping activity of the enzyme.  相似文献   

19.
The activity of the cyanide-resistant alternative oxidase (pathway) of Y. lipolytica mitochondria was studied as a function of the activity of the major, cyanide-sensitive, cytochrome pathway. The contribution of the alternative oxidase to the total respiration of mitochondria was evaluated by measuring the rate of oxygen consumption in the presence of cyanide (an inhibitor of the cytochrome pathway). The potential activity of the cytochrome pathway was evaluated spectrophotometrically, by measuring the oxidation rate of cytochrome c by ferricyanide, which accepts electrons from complex III (cytochrome c) of this pathway. The oxidation of succinate by mitochondria in the presence of ferricyanide and cyanide was accompanied by oxygen consumption due to the transfer of electrons through the alternative pathway. The subsequent addition of ADP or FCCP (an uncoupler of oxidative phosphorylation in the cytochrome pathway) completely inhibited the consumption of oxygen by the mitochondria. Under these conditions, the inhibition of the alternative pathway by benzohydroxamic acid failed to affect the transfer of electrons from cytochrome c to ferricyanide. Benzohydroxamic acid did not influence the rate of ferricyanide reduction by the cytochrome pathway occurring in controlled state 4, nor could it change the phosphorylation quotient ATP/O upon the oxidation of various substrates. These findings indicate that the alternative pathway is unable to compete with the cytochrome respiratory chain for electrons. The alternative pathway transfers only electrons that are superfluous for the cytochrome chain.  相似文献   

20.
The stoichoimetry of vectorial H+ ejection coupled to electron flow through the cytochrome c oxidase (EC 1.9.3.1) of rat liver mitochondria was determined by a new rate/pulse method. This is a modification of the oxygen-pulse method. Electron flow through the oxidase is initiated by adding oxygen to suspensions of anaerobic mitochondria at a known and constant rate. Cytochrome c oxidase was examined directly or in combination with cytochrome c reductase (ubiquinol:ferricytochrome c oxidoreductase). In both cases the----H0+/2e- ratio was found to be constant during the time-course of oxygen reduction, and thus independent of delta pH. The stoichiometries observed were consistent with mechanistic stoichiometries of 2 and 6 for cytochrome c oxidase alone and cytochrome c oxidase together with cytochrome c reductase, respectively. The stoichiometry of cytochrome c reductase alone was also examined, by using ferricyanide in place of oxygen. The results obtained were consistent with the accepted mechanistic stoichiometry of 4 for this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号