首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
蛋白酶在真菌的生存和生长过程中具有重要作用,同时也被认为是病原真菌重要的毒力因子之一。病原真菌的蛋白酶可能参与真菌在宿主的黏附、定植和播散以及逃避宿主的免疫应答过程。部分蛋白酶还被认为是变应原,可诱发哮喘和过敏性疾病。在不同的病原真菌中,蛋白酶作用也不同。研究蛋白酶的致病机制,可进一步了解真菌感染机制,为诊断及治疗真菌感染提供线索。  相似文献   

2.
Fungal infections are responsible for millions of human deaths annually. Copper, an essential but toxic trace element, plays an important role at the host-pathogen axis during infection. In this review, we describe how the host uses either Cu compartmentalization within innate immune cells or Cu sequestration in other infected host niches such as in the brain to combat fungal infections. We explore Cu toxicity mechanisms and the Cu homeostasis machinery that fungal pathogens bring into play to succeed in establishing an infection. Finally, we address recent approaches that manipulate Cu-dependent processes at the host-pathogen axis for antifungal drug development.  相似文献   

3.
Phase variation in bacteria is often considered a random process that has evolved to facilitate immune evasion in a host. Here, alternative biological roles for this process are presented and discussed, incorporating recent studies on nonpathogenic and commensal bacterial species. Furthermore, the integration of phase variation into bacterial regulatory networks and the relevance of this for considering phase variation as a random process are reviewed. Novel approaches are needed to study phase variation and its biological roles, but the insights obtained can contribute significantly to our understanding of the dynamic behaviour of bacterial populations and their interactions with the environment.  相似文献   

4.
Leaf fungal microbiomes can be fundamental drivers of host plant success, as they contain pathogens that devastate crop plants and taxa that enhance nutrient uptake, discourage herbivory, and antagonize pathogens. We measured leaf fungal diversity with amplicon sequencing across an entire growing season in a diversity panel of switchgrass (Panicum virgatum). We also sampled a replicated subset of genotypes across 3 additional sites to compare the importance of time, space, ecology, and genetics. We found a strong successional pattern in the microbiome shaped both by host genetics and environmental factors. Further, we used genome-wide association (GWA) mapping and RNA sequencing to show that 3 cysteine-rich receptor-like kinases (crRLKs) were linked to a genetic locus associated with microbiome structure. We confirmed GWAS results in an independent set of genotypes for both the internal transcribed spacer (ITS) and large subunit (LSU) ribosomal DNA markers. Fungal pathogens were central to microbial covariance networks, and genotypes susceptible to pathogens differed in their expression of the 3 crRLKs, suggesting that host immune genes are a principal means of controlling the entire leaf microbiome.

Leaf fungal microbiomes can strongly influence host plant success. Monitoring the leaf fungal microbiome of switchgrass over time shows microbial ecological succession, and reveals the host plant genes that influence community-wide changes.  相似文献   

5.
Linking fungal morphogenesis with virulence   总被引:4,自引:0,他引:4  
Pathogenic fungi have become an increasingly common cause of systemic disease in healthy people and those with impaired immune systems. Although a vast number of fungal species inhabit our planet, just a small number are pathogens, and one feature that links many of them is the ability to differentiate morphologically from mould to yeast, or yeast to mould. Morphological differentiation between yeast and mould forms has commanded attention for its putative impact on the pathogenesis of invasive fungal infections. This review explores the current body of evidence linking fungal morphogenesis and virulence. The topics addressed cover work on phase-locked fungal cells, expression of phase-specific virulence traits and modulation of host responses by fungal morphotypes. The effect of morphological differentiation on fungal interaction with host cells, immune modulation and the net consequence on pathogenesis of disease in animal model systems are considered. The evidence argues strongly that morphological differentiation plays a vital role in the pathogenesis of fungal infection, suggesting that factors associated with this conversion process represent promising therapeutic targets.  相似文献   

6.
The innate immune response was once considered to be a limited set of responses that aimed to contain an infection by primitive 'ingest and kill' mechanisms, giving the host time to mount a specific humoral and cellular immune response. In the mid-1990s, however, the discovery of Toll-like receptors heralded a revolution in our understanding of how microorganisms are recognized by the innate immune system, and how this system is activated. Several major classes of pathogen-recognition receptors have now been described, each with specific abilities to recognize conserved bacterial structures. The challenge ahead is to understand the level of complexity that underlies the response that is triggered by pathogen recognition. In this Review, we use the fungal pathogen Candida albicans as a model for the complex interaction that exists between the host pattern-recognition systems and invading microbial pathogens.  相似文献   

7.
Modeling interactions between fungi and their hosts at the systems level requires a molecular understanding both of how the host orchestrates immune surveillance and tolerance, and how this activation, in turn, affects fungal adaptation and survival. The transition from the commensal to pathogenic state, and the co-evolution of fungal strains within their hosts, necessitates the molecular dissection of fungal traits responsible for these interactions. There has been a dramatic increase in publically available genome-wide resources addressing fungal pathophysiology and host-fungal immunology. The integration of these existing data and emerging large-scale technologies addressing host-pathogen interactions requires novel tools to connect genome-wide data sets and theoretical approaches with experimental validation so as to identify inherent and emerging properties of host-pathogen relationships and to obtain a holistic view of infectious processes. If successful, a better understanding of the immune response in health and microbial diseases will eventually emerge and pave the way for improved therapies.  相似文献   

8.
Exposure to fungal pathogens from the environment is inevitable and with the number of at-risk populations increasing, the prevalence of invasive fungal infection is on the rise. An interesting group of fungal organisms known as thermally dimorphic fungi predominantly infects immunocompromised individuals. These potential pathogens are intriguing in that they survive in the environment in one form, mycelial phase, but when entering the host, they are triggered by the change in temperature to switch to a new pathogenic form. Considering the growing prevalence of infection and the need for improved diagnostic and treatment approaches, studies identifying key components of fungal recognition and the innate immune response to these pathogens will significantly contribute to our understanding of disease progression. This review focuses on key endemic dimorphic fungal pathogens that significantly contribute to disease, including Histoplasma, Coccidioides and Talaromyces species. We briefly describe their prevalence, route of infection and clinical presentation. Importantly, we have reviewed the major fungal cell wall components of these dimorphic fungi, the host pattern recognition receptors responsible for recognition and important innate immune responses supporting adaptive immunity and fungal clearance or the failure thereof.  相似文献   

9.
Adaptation to environmental conditions is key to fungal survival during infection of human hosts. Although the host immune system is often considered the primary obstacle to fungal colonization, invading fungi must also contend with extreme abiotic stresses. Recent work with human pathogenic fungi has uncovered systems for detecting and responding to changes in temperature, carbon source, metal ion availability, pH, and gas tension. These systems play a major role in adaptation to the host niche and are essential factors for persistence in a mammalian host. Future investigations into fungal responses to these and other abiotic components of the host environment have the potential to uncover novel targets for anti-fungal therapy.  相似文献   

10.
Antibody-mediated protective immunity in fungal infections   总被引:2,自引:0,他引:2  
The host response to fungal infection is the result of a complex interaction between the pathogen and the host's innate and adaptive immune system. Cell-mediated immunity is widely considered to be critical for the successful outcome of fungal infections. However, in recent years numerous studies have established that certain antibodies may play an important role in host immunoprotection against pathogenic fungi, through interaction with different cellular targets, such as mannans, heat shock proteins, capsular polysaccharides, surface proteins, and yeast killer toxin receptors, with mechanisms of action sometimes still undefined. This review summarizes the latest findings on the role of different types of antibodies in the antifungal defense against infections caused by epidemiologically important fungi, such as Candida albicans, Cryptococcus neoformans, Histoplasma capsulatum, and others. New perspectives of antibody-mediated therapy, based on the availability of monoclonal and recombinant antibodies as well as genetically engineered antibody fragments of defined specificity, will be also envisaged and discussed.  相似文献   

11.
Development of invasive fungal infection is the result of the complex interaction between fungal and host factors. The outcome of infection, once it has developed, depends upon appropriate use of antifungal therapy, surgical debridement as indicated, and improvement of host defenses. Thus, there have been major efforts for development of new strategies for immunomodulation and augmentation of host defenses in prevention and treatment of invasive mycoses. These modalities include granulocyte and granulocyte-macrophage colony-stimulating factors, interferon-γ, granulocyte transfusions, immunotherapy with infusion of dendritic cells and T cells, anti-heat shock protein 90 monoclonal antibodies, long pentraxin 3, mannose-binding lectin, and deferasirox. Although major strides in our understanding of augmentation of host response to invasive fungal infections are opening up novel avenues of therapy to harness patients’ innate immune systems against these frequently lethal pathogens, well-designed clinical trials are needed to demonstrate safety and efficacy of these new approaches.  相似文献   

12.
Laccases are widely present in bacteria, fungi, plants and invertebrates and involved in a variety of physiological functions. Here, we report that Beauveria bassiana, an economic important entomopathogenic fungus, secretes a laccase 2 (BbLac2) during infection that detoxifies insect immune response-generated reactive oxygen species (ROS) and interferes with host immune phenoloxidase (PO) activation. BbLac2 is expressed in fungal cells during proliferation in the insect haemocoel and can be found to distribute on the surface of haemolymph-derived in vivo fungal hyphal bodies or be secreted. Targeted gene-knockout of BbLac2 increased fungal sensitivity to oxidative stress, decreased virulence to insect, and increased host PO activity. Strains overexpressing BbLac2 showed increased virulence, with reduced host PO activity and lowered ROS levels in infected insects. In vitro assays revealed that BbLac2 could eliminate ROS and oxidize PO substrates (phenols), verifying the enzymatic functioning of the protein in detoxification of cytotoxic ROS and interference with the PO cascade. Moreover, BbLac2 acted as a cell surface protein that masked pathogen associated molecular patterns (PAMPs), enabling the pathogen to evade immune recognition. Our data suggest a multifunctional role for fungal pathogen-secreted laccase 2 in evasion of insect immune defenses.  相似文献   

13.
Candida albicans is an opportunistic fungal pathogen of humans causing superficial mucosal infections and life‐threatening systemic disease. The fungal cell wall is the first point of contact between the invading pathogen and the host innate immune system. As a result, the polysaccharides that comprise the cell wall act as pathogen associated molecular patterns, which govern the host–pathogen interaction. The cell wall is dynamic and responsive to changes in the external environment. Therefore, the host environment plays a critical role in regulating the host–pathogen interaction through modulation of the fungal cell wall. This review focuses on how environmental adaptation modulates the cell wall structure and composition, and the subsequent impact this has on the innate immune recognition of C. albicans.  相似文献   

14.
The production of prostaglandins (PGs) during fungal infections could be an important suppressor factor of host immune response. Host cells are one source of prostaglandin E2 (PGE2); however another potential source of PGE2 is the fungal pathogen itself. Thus, both host and fungal PGE2 production is theorized to play a role in pathogenesis, being critical for growth of the fungus and to modulate the host immune response. The purpose of this work was to investigate if high and low virulent strains of Paracoccidioides brasiliensis have the capacity to produce PGE2 in vitro, and if this production was related to the fungal growth. The results demonstrated that both strains of P. brasiliensis produce high levels of PGE2 and the treatment with indomethacin, a cyclooxygenase inhibitor, significantly reduced the production of this mediator, as well as the viability of the fungus. Thus, our data indicate that PGE2 is produced by P. brasiliensis by a cyclooxygenase–dependent metabolic pathway, and its production is required for fungal survival. This discovery reveals an important factor that has potentially great implications for understanding the mechanisms of immune deviation during infection.  相似文献   

15.
Eosinophils produce and release various proinflammatory mediators and also show immunomodulatory and tissue remodeling functions; thus, eosinophils may be involved in the pathophysiology of asthma and other eosinophilic disorders as well as host defense. Several major questions still remain. For example, how do human eosinophils become activated in diseased tissues or at the site of an immune response? What types of host immunity might potentially involve eosinophils? Herein, we found that human eosinophils react vigorously to a common environmental fungus, Alternaria alternata, which is implicated in the development and/or exacerbation of human asthma. Eosinophils release their cytotoxic granule proteins, such as eosinophil-derived neurotoxin and major basic protein, into the extracellular milieu and onto the surface of fungal organisms and kill the fungus in a contact-dependent manner. Eosinophils use their versatile beta(2) integrin molecule, CD11b, to adhere to a major cell wall component, beta-glucan, but eosinophils do not express other common fungal receptors, such as dectin-1 and lactosylceramide. The I-domain of CD11b is distinctively involved in the eosinophils' interaction with beta-glucan. Eosinophils do not react with another fungal cell wall component, chitin. Because human eosinophils respond to and kill certain fungal organisms, our findings identify a previously unrecognized innate immune function for eosinophils. This immune response by eosinophils may benefit the host, but, in turn, it may also play a role in the development and/or exacerbation of eosinophil-related allergic human diseases, such as asthma.  相似文献   

16.
17.
The fungal cell surface contributes to pathogenesis by mediating interactions with host cells and eliciting host immune responses. This review focuses on the cell wall proteome of the major fungal pathogen Candida albicans and discusses how diversity at the cell surface can be introduced by altering the expression and structure of cell wall proteins. Remodelling the cell wall architecture is critical to maintain cellular integrity in response to different environments and stresses including challenge with antifungal drugs. In addition, the dynamic nature of the cell surface alters the physical properties of the fungal interface with host cells and thereby influences adhesion to the host and recognition by components of the host's immune system. Examples of the role of cell surface diversity in the pathogenesis of a number of microorganisms are described.  相似文献   

18.
It has been long appreciated that protective immunity against fungal pathogens is dependent on activation of cellular adaptive immune responses represented by T lymphocytes. The T-helper (Th)1/Th2 paradigm has proven to be essential for the understanding of protective adaptive host responses. Studies that have examined the significance of regulatory T cells in fungal infection, and the recent discovery of a new T-helper subset called Th17 have provided crucial information for understanding the complementary roles played by the various T-helper lymphocytes in systemic versus mucosal antifungal host defense. This review provides an overview of the role of the various T-cell subsets during fungal infections and the reciprocal regulation between the T-cell subsets contributing to the tailored host response against fungal pathogens.  相似文献   

19.
Fungal infections are a global concern and the evolution of intrinsic resistance to current antifungals presents an alarming problem. For Cryptococcus neoformans, a human fungal pathogen of primarily immunocompromised individuals, resistance toward treatment strategies demands alternative approaches. Given the prevalence of virulence factor production during cryptococcal infection, an emerging and important field of research encompasses the development of novel antivirulence therapies proposed to improve host immune responses and promote fungal clearance. To accomplish this task, information regarding the presence and role of virulence factors, the mechanisms of action within the host, and the ability to influence fungal susceptibility to antifungals is pertinent. Research into mechanisms of antifungal resistance for C. neoformans is limited but extrapolation from successful studies in other fungal species can improve our understanding of mechanisms employed by C. neoformans and suggest targeted strategies to enhance our ability to combat the pathogen. In this Review, we highlight antifungal therapy options against Cryptococcus, explore current knowledge of underlying mechanisms promoting resistance, and present new opportunities for novel and effective strategies to overcome fungal infections and reduce, or possibly even reverse, the effects of resistance evolution.  相似文献   

20.
Patients with cystic fibrosis (CF) suffer from chronic lung infections, caused by bacterial, viral or fungal pathogens, which determine morbidity and mortality. The contribution of individual pathogens to chronic disease and acute lung exacerbations is often difficult to determine due to the complex composition of the lung microbiome in CF. In particular, the relevance of fungal pathogens in CF airways remains poorly understood due to limitations of current diagnostics to identify the presence of fungal pathogens and to resolve the individual host–pathogen interaction status. T-lymphocytes play an essential role in host defense against pathogens, but also in inappropriate immune reactions such as allergies. They have the capacity to specifically recognize and discriminate the different pathogens and orchestrate a diverse array of effector functions. Thus, the analysis of the fungus-specific T cell status of an individual can in principle provide detailed information about the identity of the fungal pathogen(s) encountered and the actual fungus–host interaction status. This may allow to classify patients, according to appropriate (protective) or inappropriate (pathology-associated) immune reactions against individual fungal pathogens. However, T cell-based diagnostics are currently not part of the clinical routine. The identification and characterization of fungus-specific T cells in health and disease for diagnostic purposes are associated with significant challenges. Recent technological developments in the field of fungus-specific T helper cell detection provide new insights in the host T cell–fungus interaction. In this review, we will discuss basic principles and the potential of T cell-based diagnostics, as well as the perspectives and further needs for use of T cells for improved clinical diagnostics of fungal diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号