首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Certain mutations in S12, a ribosomal protein involved in translation elongation rate and translation accuracy, confer resistance to the aminoglycoside streptomycin. Previously we showed in Salmonella typhimurium that the fitness cost, i.e. reduced growth rate, due to the amino acid substitution K42N in S12 could be compensated by at least 35 different mutations located in the ribosomal proteins S4, S5 and L19. Here, we have characterized in vivo the fitness, translation speed and translation accuracy of four different L19 mutants. When separated from the resistance mutation located in S12, the three different compensatory amino acid substitutions in L19 at position 40 (Q40H, Q40L and Q40R) caused a decrease in fitness while the G104A change had no effect on bacterial growth. The rate of protein synthesis was unaffected or increased by the mutations at position 40 and the level of read-through of a UGA nonsense codon was increased in vivo, indicating a loss of translational accuracy. The mutations in L19 increased sensitivity to aminoglycosides active at the A-site, further indicating a perturbation of the decoding step. These phenotypes are similar to those of the classical S4 and S5 ram (ribosomal ambiguity) mutants. By evolving low-fitness L19 mutants by serial passage, we showed that the fitness cost conferred by the L19 mutations could be compensated by additional mutations in the ribosomal protein L19 itself, in S12 and in L14, a protein located close to L19. Our results reveal a novel functional role for the 50 S ribosomal protein L19 during protein synthesis, supporting published structural data suggesting that the interaction of L14 and L19 with 16 S rRNA could influence function of the 30 S subunit. Moreover, our study demonstrates how compensatory fitness-evolution can be used to discover new molecular functions of ribosomal proteins.  相似文献   

2.
We examined how the fitness costs of mupirocin resistance caused by mutations in the chromosomal isoleucyl-tRNA synthetase gene (ileS) can be ameliorated. Mupirocin-resistant mutants were isolated and four different, resistance-conferring point mutations in the chromosomal ileS gene were identified. Fifty independent lineages of the low-fitness, resistant mutants were serially passaged to evolve compensated mutants with increased fitness. In 34/50 of the evolved lineages, the increase in fitness resulted from additional point mutations in isoleucine tRNA synthetase (IleRS). Measurements in vitro of the kinetics of aminoacylation of wild-type and mutant enzymes showed that resistant IleRS had a reduced rate of aminoacylation due to altered interactions with both tRNAIle and ATP. The intragenic compensatory mutations improved IleRS kinetics towards the wild-type enzyme, thereby restoring bacterial fitness. Seven of the 16 lineages that lacked second-site compensatory mutations in ileS, showed an increase in ileS gene dosage, suggesting that an increased level of defective IleRS compensate for the decrease in aminoacylation activity. Our findings show that the fitness costs of ileS mutations conferring mupirocin resistance can be reduced by several types of mechanisms that may contribute to the stability of mupirocin resistance in clinical settings.  相似文献   

3.
Policies aimed at alleviating the growing problem of drug-resistant pathogens by restricting antimicrobial usage implicitly assume that resistance reduces the Darwinian fitness of pathogens in the absence of drugs. While fitness costs have been demonstrated for bacteria and viruses resistant to some chemotherapeutic agents, these costs are anticipated to decline during subsequent evolution. This has recently been observed in pathogens as diverse as HIV and Escherichia coli. Here we present evidence that these gentic adaptations to the costs of resistance can virtually preclude resistant lineages from reverting to sensitivity. We show that second site mutations which compensate for the substantial (14 and 18% per generation) fitness costs of streptomycin resistant (rpsL) mutations in E. coli create a genetic background in which streptomycin sensitive, rpsL+ alleles have a 4-30% per generation selective disadvantage relative to adapted, resistant strains. We also present evidence that similar compensatory mutations have been fixed in long-term streptomycin-resistant laboratory strains of E. coli and may account for the persistence of rpsL streptomycin resistance in populations maintained for more than 10,000 generations in the absence of the antibiotic. We discuss the public health implications of these and other experimental results that question whether the more prudent use of antimicrobial chemotherapy will lead to declines in the incidence of drug-resistant pathogenic microbes.  相似文献   

4.
Certain str mutations that confer high- or low-level streptomycin resistance result in the overproduction of antibiotics by Streptomyces spp. The str mutations that confer the high-level resistance occur within rpsL, which encodes the ribosomal protein S12, while those that cause low-level resistance are not as well known. We have used comparative genome sequencing to determine that low-level resistance is caused by mutations of rsmG, which encodes an S-adenosylmethionine (SAM)-dependent 16S rRNA methyltransferase containing a SAM binding motif. Deletion of rsmG from wild-type Streptomyces coelicolor resulted in the acquisition of streptomycin resistance and the overproduction of the antibiotic actinorhodin. Introduction of wild-type rsmG into the deletion mutant completely abrogated the effects of the rsmG deletion, confirming that rsmG mutation underlies the observed phenotype. Consistent with earlier work using a spontaneous rsmG mutant, the strain carrying DeltarsmG exhibited increased SAM synthetase activity, which mediated the overproduction of antibiotic. Moreover, high-performance liquid chromatography analysis showed that the DeltarsmG mutant lacked a 7-methylguanosine modification in the 16S rRNA (possibly at position G518, which corresponds to G527 of Escherichia coli). Like certain rpsL mutants, the DeltarsmG mutant exhibited enhanced protein synthetic activity during the late growth phase. Unlike rpsL mutants, however, the DeltarsmG mutant showed neither greater stability of the 70S ribosomal complex nor increased expression of ribosome recycling factor, suggesting that the mechanism underlying increased protein synthesis differs in the rsmG and the rpsL mutants. Finally, spontaneous rsmG mutations arose at a 1,000-fold-higher frequency than rpsL mutations. These findings provide new insight into the role of rRNA modification in activating secondary metabolism in Streptomyces.  相似文献   

5.
Certain rpsL (which encodes the ribosomal protein S12) mutations that confer resistance to streptomycin markedly activate the production of antibiotics in Streptomyces spp. These rpsL mutations are known to be located in the two conserved regions within the S12 protein. To understand the roles of these two regions in the activation of silent genes, we used site-directed mutagenesis to generate eight novel mutations in addition to an already known (K88E) mutation that is capable of activating antibiotic production in Streptomyces lividans. Of these mutants, two (L90K and R94G) activated antibiotic production much more than the K88E mutant. Neither the L90K nor the R94G mutation conferred an increase in the level of resistance to streptomycin and paromomycin. Our results demonstrate the efficacy of the site-directed mutagenesis technique for strain improvement.  相似文献   

6.
Many mutations in rpsL cause resistance to, or dependence on, streptomycin and are restrictive (hyperaccurate) in translation. Dependence on streptomycin and hyperaccuracy can each be reversed phenotypically by mutations in either rpsD or rpsE . Such compensatory mutations have been shown to have a ram phenotype (ribosomal ambiguity), increasing the level of translational errors. We have shown recently that restrictive rpsL alleles are also associated with a loss of virulence in Salmonella typhimurium . To test whether ram mutants could reverse this loss of virulence, we have isolated a set of rpsD alleles in Salmonella typhimurium . We found that the rpsD alleles restore the virulence of strains carrying restrictive rpsL alleles to a level close to that of the wild type. Unexpectedly, three out of seven mutant rpsD alleles tested have phenotypes typical of restrictive alleles of rpsL , being resistant to streptomycin and restrictive (hyperaccurate) in translation. These phenotypes have not been previously associated with the ribosomal protein S4. Furthermore, all seven rpsD alleles (four ram and three restrictive) can phenotypically reverse the hyperaccuracy associated with restrictive alleles of rpsL . This is the first demonstration that such compensations do not require that the compensating rpsD allele has a ribosomal ambiguity ( ram ) phenotype.  相似文献   

7.
The methyltransferase RsmG methylates the N7 position of nucleotide G535 in 16S rRNA of Bacillus subtilis (corresponding to G527 in Escherichia coli). Disruption of rsmG resulted in low-level resistance to streptomycin. A growth competition assay revealed that there are no differences in fitness between the rsmG mutant and parent strains under the various culture conditions examined. B. subtilis rsmG mutants emerged spontaneously at a relatively high frequency, 10(-6). Importantly, in the rsmG mutant background, high-level-streptomycin-resistant rpsL (encoding ribosomal protein S12) mutants emerged at a frequency 200 times greater than that seen for the wild-type strain. This elevated frequency in the emergence of high-level streptomycin resistance was facilitated by a mutation pattern in rpsL more varied than that obtained by selection of the wild-type strain.  相似文献   

8.
Modulation of 16S rRNA function by ribosomal protein S12   总被引:2,自引:0,他引:2  
Ribosomal protein S12 is a critical component of the decoding center of the 30S ribosomal subunit and is involved in both tRNA selection and the response to streptomycin. We have investigated the interplay between S12 and some of the surrounding 16S rRNA residues by examining the phenotypes of double-mutant ribosomes in strains of Escherichia coli carrying deletions in all chromosomal rrn operons and expressing total rRNA from a single plasmid-borne rrn operon. We show that the combination of S12 and otherwise benign mutations at positions C1409-G1491 in 16S rRNA severely compromises cell growth while the level and range of aminoglycoside resistances conferred by the G1491U/C substitutions is markedly increased by a mutant S12 protein. The G1491U/C mutations in addition confer resistance to the unrelated antibiotic, capreomycin. S12 also interacts with the 912 region of 16S rRNA. Genetic selection of suppressors of streptomycin dependence caused by mutations at proline 90 in S12 yielded a C912U substitution in 16S rRNA. The C912U mutation on its own confers resistance to streptomycin and restricts miscoding, properties that distinguish it from a majority of the previously described error-promoting ram mutants that also reverse streptomycin dependence.  相似文献   

9.
Levin BR  Perrot V  Walker N 《Genetics》2000,154(3):985-997
In the absence of the selecting drugs, chromosomal mutations for resistance to antibiotics and other chemotheraputic agents commonly engender a cost in the fitness of microorganisms. Recent in vivo and in vitro experimental studies of the adaptation to these "costs of resistance" in Escherichia coli, HIV, and Salmonella typhimurium found that evolution in the absence of these drugs commonly results in the ascent of mutations that ameliorate these costs, rather than higher-fitness, drug-sensitive revertants. To ascertain the conditions under which this compensatory evolution, rather than reversion, will occur, we did computer simulations, in vitro experiments, and DNA sequencing studies with low-fitness rpsL (streptomycin-resistant) mutants of E. coli with and without mutations that compensate for the fitness costs of these ribosomal protein mutations. The results of our investigation support the hypothesis that in these experiments, the ascent of intermediate-fitness compensatory mutants, rather than high-fitness revertants, can be attributed to higher rates of compensatory mutations relative to that of reversion and to the numerical bottlenecks associated with serial passage. We argue that these bottlenecks are intrinsic to the population dynamics of parasitic and commensal microbes and discuss the implications of these results to the problem of drug resistance and adaptive evolution in parasitic and commmensal microorganisms in general.  相似文献   

10.
A strain of Streptomyces lividans, TK24, was found to produce a pigmented antibiotic, actinorhodin, although S. lividans normally does not produce this antibiotic. Genetic analyses revealed that a streptomycin-resistant mutation str-6 in strain TK24 is responsible for induction of antibiotic synthesis. DNA sequencing showed that str-6 is a point mutation in the rpsL gene encoding ribosomal protein S12, changing Lys-88 to Glu. Gene replacement experiments with the Lys88-->Glu str allele demonstrated unambiguously that the str mutation is alone responsible for the activation of actinorhodin production observed. In contrast, the strA1 mutation, a genetic marker frequently used for crosses, did not restore actinorhodin production and was found to result in an amino acid alteration of Lys-43 to Asn. Induction of actinorhodin production was also detected in strain TK21, which does not harbor the str-6 mutation, when cells were incubated with sufficient streptomycin or tetracycline to reduce the cell's growth rate, and 40 and 3% of streptomycin- or tetracycline-resistant mutants, respectively, derived from strain TK21 produced actinorhodin. Streptomycin-resistant mutations also blocked the inhibitory effects of relA and brgA mutations on antibiotic production, aerial mycelium formation or both. These str mutations changed Lys-88 to Glu or Arg and Arg-86 to His in ribosomal protein S12. The decrease in streptomycin production in relC mutants in Streptomyces griseus could also be abolished completely by introducing streptomycin-resistant mutations, although the impairment in antibiotic production due to bldA (in Streptomyces coelicolor) or afs mutations (in S. griseus) was not eliminated. These results indicate that the onset and extent of secondary metabolism in Streptomyces spp. is significantly controlled by the translational machinery.  相似文献   

11.
Nagel R  Chan A 《Mutation research》2006,601(1-2):162-170
Streptomycin is an aminoglycoside antibiotic that acts at the level of protein synthesis. Exposure to sublethal concentrations of this antibiotic increased significantly the number of Arg+ mutants derived from an Escherichia coli argE3 (ochre) rpsL31 (streptomycin-resistant) strain. The vast majority of these mutants appeared on selective minimal medium plates with streptomycin (200 micro g/ml) during stationary phase, after 6-10 days incubation at 37 degrees C. Derivative mutD5 or mutL or mutS mutants, carrying a faulty varepsilon subunit of DNA polymerase or a defective mismatch DNA-repair protein, respectively, also showed higher numbers of Arg+ mutants on selective medium with streptomycin than on medium without streptomycin. Interestingly, with these DNA-repair mutants about 50% of the Arg+ mutants generated in the presence of streptomycin appeared during the first 5 days of incubation. These observations suggest that the activities of these fidelity-repair proteins prevent in the parental strain the early appearance of the supernumerary Arg+ mutants on the selective medium with streptomycin. The appearance of Arg+ mutants on the plates with streptomycin was not significantly altered by recA, rpoS or dps mutations. A high percentage of the Arg+ mutants arising in the presence of streptomycin were streptomycin-dependent for growth without arginine (Arg+ St-D). These types of mutants displayed a Ram (for ribosomal ambiguity) phenotype, manifested by increased misreading, assayed by in vitro and in vivo experiments and by leakiness on several selective minimal media. Genetic data indicated that these mutants carry a mutation located at about 74 min of the E.coli map that relieves the high translational fidelity conferred by the rpsL mutation. These studies suggest that the growth-limiting conditions of the assay system used, as well as the presence of streptomycin, which causes an increased production of altered proteins, favours the appearance and growth of compensatory Arg+ mutants.  相似文献   

12.
Genetic antagonism and hypermutability in Mycobacterium smegmatis   总被引:4,自引:0,他引:4       下载免费PDF全文
Multidrug-resistant strains of Mycobacterium tuberculosis are a serious and continuing human health problem. Such strains may contain as many as four or five different mutations, and M. tuberculosis strains that are resistant to both streptomycin and rifampin contain mutations in the rpsL and rpoB genes, respectively. Coexisting mutations of this kind in Escherichia coli have been shown to interact negatively (S. L. Chakrabarti and L. Gorini, Proc. Natl. Acad. Sci. USA 72:2084-2087, 1975; S. L. Chakrabarti and L. Gorini, Proc. Natl. Acad. Sci. USA 74:1157-1161, 1977). We investigated this possibility in Mycobacterium smegmatis by analyzing the frequency and nature of spontaneous mutants that are resistant to either streptomycin or rifampin or to both antibiotics. Mutants resistant to streptomycin were isolated from characterized rifampin-resistant mutants of M. smegmatis under selection either for one or for both antibiotics. Similarly, mutants resistant to rifampin were isolated from streptomycin-resistant strains. The second antibiotic resistance mutation occurred at a lower frequency in both cases. Surprisingly, in both cases a very high rate of reversion of the initial antibiotic resistance allele was detected when single antibiotic selection was used; the majority of strains resistant to only one antibiotic were isolated by this process. Determinations of rates of mutation to antibiotic resistance in M. smegmatis showed that the frequencies were enhanced up to 10(4)-fold during stationary phase. If such behavior is also typical of slow-growing pathogenic mycobacteria, these studies suggest that the generation of multiply drug-resistant strains by successive mutations may be a more complex genetic phenomenon than suspected.  相似文献   

13.
We have isolated spontaneous streptomycin-resistant, streptomycin-dependent and streptomycin-pseudo-dependent mutants of the thermophilic bacterium Thermus thermophilus IB-21. All mutant phenotypes were found to result from single amino acid substitutions located in the rpsL gene encoding ribosomal protein S12. Spontaneous suppressors of streptomycin dependence were also readily isolated. Thermus rpsL mutations were found to be very similar to rpsL mutations identified in mesophilic organisms. This similarity affords greater confidence in the utility of the crystal structures of Thermus ribosomes to interpret biochemical and genetic data obtained with Escherichia coli ribosomes. In the X-ray crystal structure of the T. thermophilus HB8 30 S subunit, the mutated residues are located in close proximity to one another and to helices 18, 27 and 44 of 16 S rRNA. X-ray crystallographic analysis of ribosomes from streptomycin-resistant, streptomycin-pseudo-dependent and streptomycin-dependent mutants described here is expected to reveal fundamental insights into the mechanism of tRNA selection, translocation, and conformational dynamics of the ribosome.  相似文献   

14.
The capacity of ribosomal modification to improve antibiotic production by Streptomyces spp. has already been demonstrated. Here we show that introduction of mutations that produce streptomycin resistance (str) also enhances alpha-amylase (and protease) production by a strain of Bacillus subtilis as estimated by measuring the enzyme activity. The str mutations are point mutations within rpsL, the gene encoding the ribosomal protein S12. In vivo as well as in vitro poly(U)-directed cell-free translation systems showed that among the various rpsL mutations K56R (which corresponds to position 42 in E. coli) was particularly effective at enhancing alpha-amylase production. Cells harboring the K56R mutant ribosome exhibited enhanced translational activity during the stationary phase of cell growth. In addition, the K56R mutant ribosome exhibited increased 70S complex stability in the presence of low Mg2+ concentrations. We therefore conclude that the observed increase in protein synthesis activity by the K56R mutant ribosome reflects increased stability of the 70S complex and is responsible for the increase in alpha-amylase production seen in the affected strain.  相似文献   

15.
Mutations in rpoB (RNA polymerase β-subunit) can cause high-level resistance to rifampicin, an important first-line drug against tuberculosis. Most rifampicin-resistant (Rif(R)) mutants selected in vitro have reduced fitness, and resistant clinical isolates of M. tuberculosis frequently carry multiple mutations in RNA polymerase genes. This supports a role for compensatory evolution in global epidemics of drug-resistant tuberculosis but the significance of secondary mutations outside rpoB has not been demonstrated or quantified. Using Salmonella as a model organism, and a previously characterized Rif(R) mutation (rpoB R529C) as a starting point, independent lineages were evolved with selection for improved growth in the presence and absence of rifampicin. Compensatory mutations were identified in every lineage and were distributed between rpoA, rpoB and rpoC. Resistance was maintained in all strains showing that increased fitness by compensatory mutation was more likely than reversion. Genetic reconstructions demonstrated that the secondary mutations were responsible for increasing growth rate. Many of the compensatory mutations in rpoA and rpoC individually caused small but significant reductions in susceptibility to rifampicin, and some compensatory mutations in rpoB individually caused high-level resistance. These findings show that mutations in different components of RNA polymerase are responsible for fitness compensation of a Rif(R) mutant.  相似文献   

16.
Strain SRB15T+, a streptomycin-resistant, oligosporogenous mutant of Bacillus subtilis, contains two mutations, fun and strR. These mutations were mapped by PBS-1 mediated transduction and by transformation to two different sites in the cysA-linked region of the B. subtilis chromosome. The fun mutation mapped very close to rpsLl, a classic strA mutation, whereas strR mapped to a site distal to rpsE. The effects of these mutations on growth, sporulation, and streptomycin resistance in vivo and in vitro were determined. The fun mutation gave a different phenotype than did the rpsLl mutation and caused altered migration of a ribosomal protein which was identified as S12, the protein encoded by rpsL. It therefore appears that fun is an allele of the rpsL gene.  相似文献   

17.
Ribosomal protein S12 plays a pivotal role in decoding functions on the ribosome. X-ray crystallographic analyses of ribosomal complexes have revealed that S12 is involved in the inspection of codon-anticodon pairings in the ribosomal A site, as well as in the succeeding domain rearrangements of the 30S subunit that are essential for accommodation of aminoacyl-tRNA. A role for S12 in tRNA selection is also well supported by classical genetic analyses; mutations affecting S12 are readily isolated in bacteria and organelles, since specific alterations in S12 confer resistance to the error-inducing antibiotic streptomycin, and the ribosomes from many such streptomycin-resistant S12 mutants display decreased levels of miscoding. However, substitutions that confer resistance to streptomycin likely represent a very distinct class of all possible S12 mutants. Until recently, the technical difficulties in generating random, unselectable mutations in essential genes in complex operons have generally precluded the analysis of other classes of S12 alterations. Using a recombineering approach, we have targeted the Escherichia coli rpsL gene, encoding S12, for random mutagenesis and screened the resulting mutants for effects on decoding fidelity. We have recovered over 40 different substitutions located throughout the S12 protein that alter the accuracy of translation without substantially affecting the sensitivity to streptomycin. Moreover, this collection includes mutants that promote miscoding, as well as those that restrict decoding errors. These results affirm the importance of S12 in decoding processes and indicate that alterations in this essential protein can have diverse effects on the accuracy of decoding.  相似文献   

18.
The prevalence of antibiotic resistance genes in pathogenic bacteria is a major challenge to treating many infectious diseases. The spread of these genes is driven by the strong selection imposed by the use of antibacterial drugs. However, in the absence of drug selection, antibiotic resistance genes impose a fitness cost, which can be ameliorated by compensatory mutations. In Streptococcus pneumoniae, β-lactam resistance is caused by mutations in three penicillin-binding proteins, PBP1a, PBP2x, and PBP2b, all of which are implicated in cell wall synthesis and the cell division cycle. We found that the fitness cost and cell division defects conferred by pbp2b mutations (as determined by fitness competitive assays in vitro and in vivo and fluorescence microscopy) were fully compensated by the acquisition of pbp2x and pbp1a mutations, apparently by means of an increased stability and a consequent mislocalization of these protein mutants. Thus, these compensatory combinations of pbp mutant alleles resulted in an increase in the level and spectrum of β-lactam resistance. This report describes a direct correlation between antibiotic resistance increase and fitness cost compensation, both caused by the same gene mutations acquired by horizontal transfer. The clinical origin of the pbp mutations suggests that this intergenic compensatory process is involved in the persistence of β-lactam resistance among circulating strains. We propose that this compensatory mechanism is relevant for β-lactam resistance evolution in Streptococcus pneumoniae.  相似文献   

19.
Summary Two spontaneous mutants of Escherichia coli strain KMBL-146 selected for resistance to the aminoglycoside antibiotic neamine show severe restriction of amber suppressors in vivo. Purified ribosomes from the mutant strains exhibit low neamine-induced misreading in vitro and a decreased affinity for the related antibiotic streptomycin.Biochemical analysis shows that the mutants each have two modified 30S ribosomal proteins, S12 and S5. In agreement with these results, genetic analysis shows that two mutations are present, neither of which confers resistance to neamine by itself; the mutation located in gene rpxL (the structural gene for protein S12) confers streptomycin dependence but this dependence is suppressed in the presence of the second mutation, located in gene rpxE (the structural gene for protein S5).  相似文献   

20.
A spontaneous rpsL mutant of Thermus thermophilus was isolated in a search for new selection markers for this organism. This new allele, named rpsL1, encodes a K47R/K57E double mutant S12 ribosomal protein that confers a streptomycin-dependent (SD) phenotype to T. thermophilus. Models built on the available three-dimensional structures of the 30S ribosomal subunit revealed that the K47R mutation directly affects the streptomycin binding site on S12, whereas the K57E does not apparently affect this binding site. Either of the two mutations conferred the SD phenotype individually. The presence of the rpsL1 allele, either as a single copy inserted into the chromosome as part of suicide plasmids or in multicopy as replicative plasmids, produced a dominant SD phenotype despite the presence of a wild-type rpsL gene in a host strain. This dominant character allowed us to use the rpsL1 allele not only for positive selection of plasmids to complement a kanamycin-resistant mutant strain, but also more specifically for the isolation of deletion mutants through a single step of negative selection on streptomycin-free growth medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号