首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Untreated insulin-deficient diabetes causes hyperphagia and neuroendocrine disturbances that may be partly mediated by increased hypothalamic activity of neuropeptide Y (NPY), a potent central appetite stimulant. The metabolic signal that stimulates hypothalamic NPY is unknown. This study aimed to determine whether insulin deficiency or hyperglycemia was responsible. Regional hypothalamic NPY concentrations were compared in streptozocin-diabetic (STZ-D) rats rendered nearly normoglycemic by either insulin replacement or food restriction. Untreated STZ-D rats were hyperphagic and showed significantly increased (p less than 0.01) hypothalamic NPY concentrations in the arcuate nucleus and lateral hypothalamic area. Once-daily ultralente insulin injections corrected hypoinsulinemia and hyperglycemia, abolished hyperphagia, and normalized NPY concentrations in all hypothalamic regions. By contrast, food restriction effectively lowered glycemia without raising insulin levels. In these underfed diabetic rats, NPY concentrations rose further and were significantly higher than nondiabetic and untreated diabetic levels in most hypothalamic regions. We conclude that insulin deficiency is a major stimulus to hypothalamic NPY in STZ-D, whereas hyperglycemia may exert an inhibitory influence. These findings support the hypothesis that hypothalamic NPY responds to specific metabolic cues and is involved in regulating energy balance and conserving body weight.  相似文献   

2.
Neuropeptide Y (NPY) is a major hypothalamic peptide which is implicated in the regulation of energy balance and in the activation of the hypothalamo-pituitary adrenal axis. This study aimed primarily to determine the effects on regional hypothalamic NPY levels, of catabolism and weight loss induced in rats by the synthetic glucocorticoid, dexamethasone, injected daily at a dose of 0.4 mg/kg for 7 days. NPY concentrations were significantly raised in the paraventricular nucleus (PVN) of male Wistar rats (45%, p = 0.009; n = 10) compared with saline-injected controls (n = 10). Body weight (p less than 0.001) and food intake (p less than 0.001) were significantly reduced, plasma insulin concentrations were increased (p less than 0.001), but there was no change in glucose concentrations. Chronic dexamethasone treatment did not cause the marked NPY increases in the arcuate nucleus (ARC) and other hypothalamic regions which have been observed in other catabolic states causing weight loss. One possible explanation is the high insulin levels induced by dexamethasone, which may have prevented compensatory hyperphagia by suppressing an increase in hypothalamic NPYergic activity. We also examined the acute effects of a single dexamethasone injection on regional hypothalamic levels, to determine whether the drug had a direct action separate from that due to sustained weight loss. In the acute study, groups of rats (n = 7) were examined at 4 h after a single injection of dexamethasone or saline. NPY concentrations were significantly increased in the lateral hypothalamic area (LHA), (60%, p = 0.008) when compared with saline-injected controls, but there was no change in body weight or glucose or insulin concentrations during the 4h interval. Altered transport or release of NPY in the lateral hypothalamic area may be a result of acute feedback regulation by glucocorticoids on the hypothalamus.  相似文献   

3.
Although acute food deprivation and chronic food restriction both result in body weight loss, they produce different metabolic states. To evaluate how these two treatments affect hypothalamic peptide systems involved in energy homeostasis, we compared patterns of hypothalamic neuropeptide Y (NPY), agouti-related protein (AgRP), proopiomelanocotin (POMC), and leptin receptor gene expression in acutely food-deprived and chronically food-restricted rats. Both acute food deprivation and chronic food restriction reduced body weight and circulating leptin levels and resulted in increased arcuate NPY and decreased arcuate POMC gene expression. Arcuate AgRP mRNA levels were only elevated in acutely deprived rats. NPY gene expression was increased in the compact subregion of the dorsomedial hypothalamus (DMH) in response to chronic food restriction, but not in response to acute food deprivation. Leptin receptor expression was not affected by either treatment. Double in situ hybridization histochemistry revealed that, in contrast to the situation in the arcuate nucleus, NPY and leptin receptor mRNA-expressing neurons were not colocalized in the DMH. Together, these data suggest that arcuate and DMH NPY gene expression are differentially regulated. DMH NPY-expressing neurons do not appear to be under the direct control of leptin signaling.  相似文献   

4.
We have studied the hypothalamic activity of the neuropeptide Y (NPY) system in dietary-induced obese male Wistar rats and examined whether the NPY antagonist, BW1229U91, can inhibit the hyperphagia during positive energy balance associated with feeding rats an energy-rich, highly palatable diet. Rats given a highly palatable, high-fat diet became obese after 8 weeks and exhibited hyperinsulinemia and hyperleptinemia, as compared to lean rats fed on standard pellet laboratory diet. Hypothalamic NPY mRNA concentrations were significantly reduced by approximately 70% in dietary-obese rats compared with lean controls, and the former were hypersensitive to intracerebroventricular injections of NPY, possibly as a result of NPY receptor up-regulation. Intracerebroventricular injections of BW 1229U91, that inhibits food intake in starved rats, did not alter food intake in either control or obese rats fed either standard pellet diet or the highly palatable diet, respectively. We conclude that dietary-obese rats have underactive hypothalamic NPYergic neurons compared to lean controls, possibly as a result of increased plasma concentrations of leptin and/or insulin that directly inhibit the NPY neuronal activity. The lack of effect of BW1229U91 on the increased caloric intake of dietary-obese rats suggests that the hyperphagia is not NPY-driven and supports the data indicating reduced synaptic activity of the hypothalamic NPY system.  相似文献   

5.
To determine if the anorectic effects of the insulin antagonist diazoxide (DZ) are mediated by reduced central neuropeptide Y (NPY), female Zucker rats, given DZ (150 mg/kg/day) or placebo for about four weeks, were sacrificed following overnight fasting or free feeding. Several hypothalamic and extra-hypothalamic nuclei were extracted for NPY content. DZ reduced weight gain in obese rats and lowered glucose of lean and obese rats without affecting insulin. Contrary to the hypothesis, DZ increased NPY in hypothalamic nuclei of free fed lean and obese rats. DZ elevated hypothalamic NPY levels in fasted obese rats and had more diverse effects in extra-hypothalamic nuclei of lean rats.  相似文献   

6.
The success of antipsychotic drug treatment in patients with schizophrenia is limited by the propensity of these drugs to induce hyperphagia, weight gain and other metabolic disturbances, particularly evident for olanzapine and clozapine. However, the molecular mechanisms involved in antipsychotic-induced hyperphagia remain unclear. Here, we investigate the effect of olanzapine administration on the regulation of hypothalamic mechanisms controlling food intake, namely neuropeptide expression and AMP-activated protein kinase (AMPK) phosphorylation in rats. Our results show that subchronic exposure to olanzapine upregulates neuropeptide Y (NPY) and agouti related protein (AgRP) and downregulates proopiomelanocortin (POMC) in the arcuate nucleus of the hypothalamus (ARC). This effect was evident both in rats fed ad libitum and in pair-fed rats. Of note, despite weight gain and increased expression of orexigenic neuropeptides, subchronic administration of olanzapine decreased AMPK phosphorylation levels. This reduction in AMPK was not observed after acute administration of either olanzapine or clozapine. Overall, our data suggest that olanzapine-induced hyperphagia is mediated through appropriate changes in hypothalamic neuropeptides, and that this effect does not require concomitant AMPK activation. Our data shed new light on the hypothalamic mechanism underlying antipsychotic-induced hyperphagia and weight gain, and provide the basis for alternative targets to control energy balance.  相似文献   

7.
In an attempt to elucidate the effect of vanadium compounds on the gene expression of neuropeptide Y (NPY), vanadyl sulfate (VOSO4) was orally administrated at the dose of 1 mg/kg body weight into streptozotocin-induced diabetic rats (STZ-diabetic rats) three times daily for 1 week. We found a marked lowering of plasma glucose with a significant decrease of food and water intake in these STZ-diabetic rats treated with VOSO4, although the weight gain was unaffected. The increase of hypothalamic NPY, both the mRNA level and peptide concentration, in STZ-diabetic rats was also reduced by this oral treatment of VOSO4. However, similar treatment of VOSO4 in normal rats failed to modify the feeding behavior and hypothalamic NPY gene expression. These data suggest that decrease of hypothalamic NPY gene expression by VOSO4 is related to the recovery of hyperphagia in diabetic rats lacking insulin.  相似文献   

8.
Neuropeptide Y (NPY) Y1 receptors are implicated in CNS regulation of food intake, but their role in hypoglycemic hyperphagia remains unclear. The present studies utilized a pharmacological approach to investigate the hypothesis that NPY acts via Y1 receptor-dependent mechanisms to regulate feeding and blood glucose profiles during intermediate insulin-induced hypoglycemia. Groups of ovariectomized, estradiol benzoate-treated female rats were injected subcutaneously with one or four doses of neutral protamine Hagedorn insulin (NPH), on as many days, or with diluent alone. Before final treatments on day four, the animals were pretreated by intracerebroventricular (icv) delivery of the NPY Y1 receptor antagonist, 1229U91, or the vehicle, artificial cerebrospinal fluid (acsf). Food intake during acute hypoglycemia was significantly diminished between to and + 2 h in animals pretreated with the Y1 receptor antagonist versus vehicle. Administration of 1229U91 prior to the fourth of four NPH doses suppressed hypoglycemic hyperphagia over a relatively longer interval, e.g. 4 h, after to relative to the acute insulin group. Blood glucose levels after a single NPH injection were similar in acsf- and antagonist-pretreated rats at + 2, + 4, and + 6 h, but were lower at + 9 h in the latter group. Pretreatment with 1229U91 did not modify glucose profiles between + 2 and + 9 h after multiple dosing with NPH, but prevented recovery from hypoglycemia at + 12 h. The present results show that central NPY Y1 receptor antagonism inhibits hypoglycemic hyperphagia, and that this suppressive effect on feeding was of greater duration during recurring hypoglycemia. The data also show that Y1 receptor blockade decreases glycemic responses to both single and serial NPH dosing, albeit at different post-injection time points. The current studies support the view that NPY Y1 receptors function within central neural pathways that govern feeding and glycemic responses to intermediate-acting insulin, and that Y1 receptor-mediated stimulation of food intake may habituate in a positive manner to repetitive insulin-induced hypoglycemia. Further research is needed to evaluate the impact of chronic insulin-induced hypoglycemia on neuropeptide Y neurotransmission and Y1 receptor expression within regulatory circuitries that control food intake and glucostasis.  相似文献   

9.
Thyroid hormone regulates food intake. We previously reported that rats with triiodothyronine (T3)-induced thyrotoxicosis display hyperphagia associated with suppressed circulating leptin levels, increased hypothalamic neuropeptide Y (NPY) mRNA and decreased hypothalamic pro-opiomelanocortin (POMC) mRNA. AMP-activated kinase (AMPK) is a serine/threonine protein kinase that is activated when cellular energy is depleted. We hypothesized that T3 causes an increase in hypothalamic AMPK activity, which in turn contributes to the development of T3-induced hyperphagia. Rats that were given s.c. injections of T3 (4.5 nmol/kg) had increased food intake 2 h later without alterations in NPY and POMC mRNA levels, but with increased hypothalamic phosphorylated AMPK (169%) and phosphorylated acetyl-CoA carboxylase (194%). To determine the more chronic effects of T3, rats were given 6 daily s.c. injection of T3 or the vehicle. Food intake was significantly increased. Multiple T3 injections increased hypothalamic phosphorylated AMPK (278%) and phosphorylated acetyl-CoA carboxylase (335%) compared to the controls. Intracerebroventricular administration of compound C, an AMPK inhibitor, blocked the food intake induced by a single or multiple injections of T3. Taken together, these results suggest that enhanced hypothalamic AMPK phosphorylation contributes to T3-induced hyperphagia. Hypothalamic AMPK plays an important role in the regulation of food intake and body weight.  相似文献   

10.
Fasting increases neuropeptide Y (NPY) concentrations in the arcuate nucleus (ARC), its site of synthesis, and in other regions of the rat hypothalamus. Neuropeptide Y is a potent central orexigenic agent and may therefore stimulate appetite during fasting. We tested the hypothesis that low plasma insulin levels stimulate ARC levels of NPY in fasted rats. Compared with freely fed controls (n = 8), rats fasted for 72 h (n = 8) showed significantly lower plasma insulin levels (28.9 ± 1.6 vs. 52.6 ± 5.7 pmol/l; p < 0.001) and higher ARC NPY concentrations (14.2 ± 1.8 vs. 8.4 ± 2.2 fmol/μg protein; p < 0.001). Fasted rats treated with subcutaneous insulin (5 U/kg/day; n = 10), which nearly normalized plasma insulin (46.6 ± 2.8 pmol/l), showed intermediate ARC NPY levels (11.2 ± 1.4 fmol/μg protein; p < 0.01 vs. controls and untreated fasted rats). Insulin administered peripherally, therefore, attenuates fasting-induced NPY increases in the ARC, supporting the hypothesis that hypoinsulinemia stimulates hypothalamic NPY.  相似文献   

11.
12.
Otsuka Long-Evans Tokushima Fatty (OLETF) rats lacking CCK-A receptors are hyperphagic, obese, and diabetic. We have previously demonstrated that these rats have a peripheral satiety deficit resulting in increased meal size. To examine the potential role of hypothalamic pathways in the hyperphagia and obesity of OLETF rats, we compared patterns of hypothalamic neuropeptide Y (NPY), proopiomelanocortin (POMC), and leptin receptor mRNA expression in ad libitum-fed Long-Evans Tokushima (LETO) and OLETF rats and food-restricted OLETF rats that were pair-fed to the intake of LETO controls. Pair feeding OLETF rats prevented their increased body weight and elevated levels of plasma insulin and leptin and normalized their elevated POMC and decreased NPY mRNA expression in the arcuate nucleus. In contrast, NPY expression was upregulated in the dorsomedial hypothalamus (DMH) in pair-fed OLETF rats. A similar DMH NPY overexpression was evident in 5-wk-old preobese OLETF rats. These findings suggest a role for DMH NPY upregulation in the etiology of OLETF hyperphagia and obesity.  相似文献   

13.
The influence of cholecystokinin octapeptide (CCK-8) on normal and insulin-induced feeding and expression of orexigenic hypothalamic neuropeptides was investigated in male rats. CCK-8, administered during meals (4 microg/kg) or continuously (32 microg/kg over 60 min), blunted the stimulating effect of insulin (50 IU/kg) on feeding by reducing meal size (-60%; P<0.05 or -86%; P<0.0001, respectively). Rats without access to food and injected with IP insulin (50 IU/kg) showed increased hypothalamic mRNA levels of orexin (+30%; P<0.05) and melanin-concentrating hormone (+52%; P<0.05), as compared with ad libitum-fed and saline-injected control rats. Continuous IP infusion of CCK-8 (32 microg/kg) blunted these increases. Our results suggest that both orexin and melanin-concentrating hormone participate in the response to insulin hypoglycemia without food being present; these neurons may be involved in mechanisms related to insulin-induced hyperphagia. Signals triggered by peripheral CCK-8 act to decrease the expression of orexin and melanin-concentrating hormone. This may be associated with a reduction in hyperphagia.  相似文献   

14.
This study evaluated whether attenuation of sympathoadrenal responses to recurrent hypoglycemia is mediated by diminished noradrenergic activity in the hypothalamus. Male Sprague-Dawley rats received either once daily insulin (1.0 units/kg) injections or an equal administration of saline for 3 days. Both groups received an administration of insulin on the fourth day, during which blood glucose and plasma catecholamines were determined, and extracellular norepinephrine (NE) in the ventromedial hypothalamus (VMH) or paraventricular hypothalamic nucleus (PVN) was monitored with microdialysis. The peak response of plasma epinephrine to insulin-induced hypoglycemia (nadir approximately 3.2 mmol/l) was significantly reduced during the fourth hypoglycemic episode (774 +/- 134 pg/ml) compared with the first episode (2,561 +/- 410 pg/ml, P < 0.001). Baseline levels of extracellular NE were elevated approximately 25% (P = 0.07) in the VMH and approximately 46% (P = 0.03) in the PVN after multiple hypoglycemic episodes. There was no difference in noradrenergic activity during the first or fourth hypoglycemic episode in either brain area. The reduced sympathoadrenal output after recurrent hypoglycemia is likely postsynaptic from hypothalamic NE release or is mediated via a collateral pathway.  相似文献   

15.
Recently, we established that hypothalamo-pituitary-adrenal (HPA) and counterregulatory responses to insulin-induced hypoglycemia were impaired in uncontrolled streptozotocin (STZ)-diabetic (65 mg/kg) rats and insulin treatment restored most of these responses. In the current study, we used phloridzin to determine whether the restoration of blood glucose alone was sufficient to normalize HPA function in diabetes. Normal, diabetic, insulin-treated, and phloridzin-treated diabetic rats were either killed after 8 days or subjected to a hypoglycemic (40 mg/dl) glucose clamp. Basal: Elevated basal ACTH and corticosterone in STZ rats were normalized with insulin but not phloridzin. Increases in hypothalamic corticotrophin-releasing hormone (CRH) and inhibitory hippocampal mineralocorticoid receptor (MR) mRNA with STZ diabetes were not restored with either insulin or phloridzin treatments. Hypoglycemia: In response to hypoglycemia, rises in plasma ACTH and corticosterone were significantly lower in diabetic rats compared with controls. Insulin and phloridzin restored both ACTH and corticosterone responses in diabetic animals. Hypothalamic CRH mRNA and pituitary pro-opiomelanocortin mRNA expression increased following 2 h of hypoglycemia in normal, insulin-treated, and phloridzin-treated diabetic rats but not in untreated diabetic rats. Arginine vasopressin mRNA was unaltered by hypoglycemia in all groups. Interestingly, hypoglycemia decreased hippocampal MR mRNA in control, insulin-, and phloridzin-treated diabetic rats but not uncontrolled diabetic rats, whereas glucocorticoid receptor mRNA was not altered by hypoglycemia. In conclusion, despite elevated basal HPA activity, HPA responses to hypoglycemia were markedly reduced in uncontrolled diabetes. We speculate that defects in the CRH response may be related to a defective MR response. It is intriguing that phloridzin did not restore basal HPA activity but it restored the HPA response to hypoglycemia, suggesting that defects in basal HPA function in diabetes are due to insulin deficiency, but impaired responsiveness to hypoglycemia appears to stem from chronic hyperglycemia.  相似文献   

16.
While a dysregulation in neuropeptide Y (NPY) signaling has been described in rodent models of obesity, few studies have investigated the time-course of changes in NPY content and responsiveness during development of diet-induced obesity. Therefore we investigated the effect of differing lengths (2-17 weeks) of high-fat diet on hypothalamic NPY peptide content, release and NPY-induced hyperphagia. Male Sprague-Dawley rats (211 +/- 3 g) were fed either a high-fat diet (30% fat) or laboratory chow (5% fat). Animals were implanted with intracerebroventricular cannulae to investigate feeding responses to NPY (0.5 nmol, 1 nmol) after 4 or 12 weeks of diet. At the earlier stage of obesity, NPY-induced hyperphagia was not altered; however, animals maintained on the high-fat diet for the longer duration were hyper-responsive to NPY, compared to chow-fed control rats (p < 0.05). Overall, hypothalamic NPY peptide content tended to be decreased from 9 to 17 weeks of diet (p < 0.05). Total hypothalamic NPY content was negatively correlated with plasma leptin concentration (p < 0.05), suggesting the hypothalamic NPY system remains responsive to leptin's inhibitory signal. In addition, hypothalamic NPY overflow was significantly reduced in high-fat fed animals (p < 0.05). Together these results suggest a reduction in hypothalamic NPY activity in high-fat fed animals, perhaps in an attempt to restore energy balance.  相似文献   

17.
Appetite is regulated by a number of hypothalamic neuropeptides including neuropeptide Y (NPY), a powerful feeding stimulator that responds to feeding status, and drugs such as nicotine and cannabis. There is debate regarding the extent of the influence of obesity on hypothalamic NPY. We measured hypothalamic NPY in male Sprague-Dawley rats after short or long term exposure to cafeteria-style high fat diet (32% energy as fat) or laboratory chow (12% fat). Caloric intake and body weight were increased in the high fat diet group, and brown fat and white fat masses were significantly increased after 2 weeks. Hypothalamic NPY concentration was only significantly decreased after long term consumption of the high fat diet. Nicotine decreases food intake and body weight, with conflicting effects on hypothalamic NPY reported. Body weight, plasma hormones and brain NPY were investigated in male Balb/c mice exposed to cigarette smoke for 4 days, 4 and 12 weeks. Food intake was significantly decreased by smoke exposure (2.32+/-0.03g/24h versus 2.71+/-0.04g/24h in control mice (non-smoke exposed) at 12 weeks). Relative to control mice, smoke exposure led to greater weight loss, while pair-feeding the equivalent amount of chow caused an intermediate weight loss. Chronic smoke exposure, but not pair-feeding, was associated with decreased hypothalamic NPY concentration, suggesting an inhibitory effect of cigarette smoking on brain NPY levels. Thus, consumption of a high fat diet and smoke exposure reprogram hypothalamic NPY. Reduced NPY may contribute to the anorexic effect of smoke exposure.  相似文献   

18.
19.
20.
Regional hypothalamic neuropeptide Y (NPY) concentrations were compared between cp/cp JCR:LA corpulent rats, which were grossly obese, hyperphagic, and hyperinsulinemic, and lean (+/+) controls. In freely fed cp/cp rats, NPY levels in the arcuate nucleus (ARC) were 31% higher than in lean rats (p less than 0.001). In lean rats, chronic food restriction significantly raised NPY levels by 22% in the ARC (p less than 0.05) and by 44% in the dorsomedial nucleus (DMH; p less than 0.05). By contrast, food-restricted cp/cp rats showed no change in the ARC, but NPY levels rose in the DMH (by 36%; p less than 0.05) and ventromedial nucleus (31%; p less than 0.05). Increased NPY levels in the ARC, the major site of hypothalamic NPY synthesis, suggests increased NPYergic activity in cp/cp rats; given the central actions of NPY, this could contribute to hyperphagia, obesity, and hyperinsulinemia in this syndrome. Abnormal NPY responses to food deprivation further suggest dysregulation of NPY in cp/cp rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号