首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mimivirus, or Acanthamoeba polyphaga mimivirus (APMV), a giant double-stranded DNA virus that grows in amoeba, was identified for the first time in 2003. Entry by phagocytosis within amoeba has been suggested but not demonstrated. We demonstrate here that APMV was internalized by macrophages but not by non-phagocytic cells, leading to productive APMV replication. Clathrin- and caveolin-mediated endocytosis pathways, as well as degradative endosome-mediated endocytosis, were not used by APMV to invade macrophages. Ultrastructural analysis showed that protrusions were formed around the entering virus, suggesting that macropinocytosis or phagocytosis was involved in APMV entry. Reorganization of the actin cytoskeleton and activation of phosphatidylinositol 3-kinases were required for APMV entry. Blocking macropinocytosis and the lack of APMV colocalization with rabankyrin-5 showed that macropinocytosis was not involved in viral entry. Overexpression of a dominant-negative form of dynamin-II, a regulator of phagocytosis, inhibited APMV entry. Altogether, our data demonstrated that APMV enters macrophages through phagocytosis, a new pathway for virus entry in cells. This reinforces the paradigm that intra-amoebal pathogens have the potential to infect macrophages.  相似文献   

2.
Nucleoside diphosphate kinases (NDPKs) are ubiquitous phosphotransfer enzymes responsible for producing most of the nucleoside triphosphates except for ATP. This role is important for the synthesis of nucleic acids and proteins and the metabolism of sugars and lipids. Apart from this housekeeping role NDPKs have been shown to have many regulatory functions in diverse cellular processes including proliferation and endocytosis. Although the protein has been shown to have a positive regulatory role in clathrin- and dynamin-mediated micropinocytosis, its roles in macropinocytosis and phagocytosis have not been studied. The additional non-housekeeping roles of NDPK are often independent of enzyme activity but dependent on the expression level of the protein. In this study we altered the expression level of NDPK in the model eukaryotic organism Dictyostelium discoideum through antisense inhibition and overexpression. We demonstrate that NDPK levels affect growth, endocytosis and exocytosis. In particular we find that Dictyostelium NDPK negatively regulates endocytosis in contrast to the positive regulatory role identified in higher eukaryotes. This can be explained by the differences in types of endocytosis that have been studied in the different systems - phagocytosis and macropinocytosis in Dictyostelium compared with micropinocytosis in mammalian cells. This is the first report of a role for NDPK in regulating macropinocytosis and phagocytosis, the former being the major fluid phase uptake mechanism for macrophages, dendritic cells and other (non dendritic) cells exposed to growth factors.  相似文献   

3.
Platelet-derived microparticles (PMP) bind and modify the phenotype of many cell types including endothelial cells. Recently, we showed that PMP were internalized by human brain endothelial cells (HBEC). Here we intend to better characterize the internalization mechanisms of PMP and their intracellular fate. Confocal microscopy analysis of PKH67-labelled PMP distribution in HBEC showed PMP in early endosome antigen 1 positive endosomes and in LysoTracker-labelled lysosomes, confirming a role for endocytosis in PMP internalization. No fusion of calcein-loaded PMP with HBEC membranes was observed. Quantification of PMP endocytosis using flow cytometry revealed that it was partially inhibited by trypsin digestion of PMP surface proteins and by extracellular Ca(2+) chelation by EDTA, suggesting a partial role for receptor-mediated endocytosis in PMP uptake. This endocytosis was independent of endothelial receptors such as intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 and was not increased by tumour necrosis factor stimulation of HBEC. Platelet-derived microparticle internalization was dramatically increased in the presence of decomplemented serum, suggesting a role for PMP opsonin-dependent phagocytosis. Platelet-derived microparticle uptake was greatly diminished by treatment of HBEC with cytochalasin D, an inhibitor of microfilament formation required for both phagocytosis and macropinocytosis, with methyl-β-cyclodextrin that depletes membrane cholesterol needed for macropinocytosis and with amiloride that inhibits the Na(+)/H(+) exchanger involved in macropinocytosis. In conclusion, PMP are taken up by active endocytosis in HBEC, involving mechanisms consistent with both phagocytosis and macropinocytosis. These findings identify new processes by which PMP could modify endothelial cell phenotype and functions.  相似文献   

4.
Phagocytosis and macropinocytosis are actin-dependent clathrin-independent processes primarily performed by cells like neutrophils and macrophages that result in the internalization of particles or the formation of fluid-filled macropinosomes, respectively. Phagocytosis consists of a number of stages, including attachment of particles to cell surface receptors, engulfment of the particle dependent on actin polymerization and membrane exocytosis, and formation of phago-lysosomes. In contrast, the molecular steps regulating macropinocytosis are only just now being deciphered. Much remains to be learned concerning the signaling pathways that regulate these processes. Dictyostelium is a genetically and biochemically tractable professional phagocyte that has proven to be a powerful system with which to determine the nature of the molecular steps involved in regulating these internalization processes. This review summarizes what is currently understood concerning the molecular mechanisms governing phagocytosis and macropinocytosis in Dictyostelium and describes recent data concerning the common and distinct pathways that regulate these processes.  相似文献   

5.
We used fluorescence microscopy of live Acanthamoeba to follow the time course of the concentration of myosin-I next to the plasma membrane at sites of macropinocytosis and phagocytosis. We marked myosin-I with a fluorescently labeled monoclonal antibody (Cy3-M1.7) introduced into the cytoplasm by syringe loading. M1.7 binds myosin-IA and -IC without affecting their activities, but does not bind myosin-IB. Cy3-M1.7 concentrates at two different macropinocytic structures: large circular membrane ruffles that fuse to create macropinosomes, and smaller endocytic structures that occur at the end of stalk-like pseudopodia. These dynamic structures enclose macropinosomes every 30-60 s. Cy3-M1.7 accumulates rapidly as these endocytic structures form and dissipate rapidly after they internalize. Double labeling fixed cells with Cy3-M1.7 and polyclonal antibodies specific for myosin-IA, -IB, or -IC revealed that all three myosin-I isoforms associate with macropinocytic structures, but individual structures vary in their myosin-I isoform composition. Myosin-I and actin also concentrate transiently at sites where amoebae ingest yeast or the pseudopodia of neighboring cells (heterophagy) by the process of phagocytosis. Within 3 min of yeast attachment to the amoeba, myosin-I concentrates around the phagocytic cup, yeast are internalized, and myosin-I de-localizes. Despite known differences in the regulation of macropinocytosis and phagocytosis, the morphology, protein composition, and dynamics of phagocytosis and macropinocytosis are similar, indicating that they share common structural properties and contractile mechanisms.  相似文献   

6.
Dictyostelium discoideum is a simple eukaryote amenable to detailed molecular studies of the endocytic processes phagocytosis and macropinocytosis. Both the actin cytoskeleton and associated myosin motors are well-described and a range of mutants are now available that enable characterization of the role of the cytoskeleton in a range of cellular functions. Molecular genetic studies have uncovered roles for two different classes of Dictyostelium unconventional myosins in endocytosis. The class I myosins contribute to both macropinocytosis and phagocytosis by playing a general role in controlling actin-dependent manipulations of the actin-rich cortex. A class VII myosin has been shown to be important for phagocytosis. This brief review summarizes what is known about the role of these different myosins in both fluid and particle uptake in this system.  相似文献   

7.
One important feature of Yersinia pseudotuberculosis that enables resistance against the host immune defence is delivery of the antiphagocytic effectors YopH and YopE into phagocytic cells. The tyrosine phosphatase YopH influences integrin signalling, and YopE impairs cytoskeletal dynamics by inactivating Rho GTPases. Here, we report the impact of these effectors on internalization by dendritic cells (DCs), which internalize antigens to orchestrate host immune responses. We found that this pathogen resists internalization by DCs via YopE. YopH that is important for blocking phagocytosis by macrophages and neutrophils and which is also present inside the DCs does not contribute to the resistance. However, the YopH targets Fyb and p130Cas show higher expression levels in macrophages than in DCs. Furthermore, live cell microscopy revealed that the cells internalize Y. pseudotuberculosis in different ways: the macrophages utilize a locally restricted receptor-mediated zipper mechanism, whereas DCs utilize macropinocytosis involving constitutive ruffling that randomly catches bacteria into membrane folds. We conclude that YopH impacts early phagocytic signalling from the integrin receptor to which the bacterium binds and that this tight receptor-mediated stimulation is absent in DC macropinocytosis. Inactivation of cytoskeletal dynamics by YopE affects ruffling activity and hence also internalization. The different modes of internalization can be coupled to the major functions of these respective cell types: elimination by phagocytosis and antigen sampling.  相似文献   

8.
The best described function of the adaptor complex-1 (AP-1) is to participate in the budding of clathrin-coated vesicles from the trans-Golgi network and endosomes. Here, we show that AP-1 is also localized to phagocytic cups in murine macrophages as well as in Dictyostelium amoebae. AP-1 is recruited to phagosomal membranes at this early stage of phagosome formation and rapidly dissociates from maturing phagosomes. To establish the role of AP-1 in phagocytosis, we made used of Dictyostelium mutant cells (apm1(-) cells) disrupted for AP-1 medium chain. In this mutant, phagocytosis drops by 60%, indicating that AP-1 is necessary for efficient phagocytosis. Furthermore, phagocytosis in apm1(-) cells is more affected for large rather than small particles, and cells exhibiting incomplete engulfment are then often observed. This suggests that AP-1 could participate in the extension of the phagocytic cup. Interestingly, macropinocytosis, a process dedicated to fluid-phase endocytosis and related to phagocytosis, is also impaired in apm1(-) cells. In summary, our data suggest a new role of AP-1 at an early stage of phagosome and macropinosome formation.  相似文献   

9.
Transfection of Rat1 fibroblasts with an activated form of rac1 (V12rac1) stimulated cell migration in vitro compared to transfection of Rat1 fibroblasts with vector only or with dominant negative rac1 (N17rac1). To investigate the involvement of proteases in this migration, we used a novel confocal assay to evaluate the ability of the Rat1 transfectants to degrade a quenched fluorescent protein substrate (DQ-green bovine serum albumin) embedded in a three-dimensional gelatin matrix. Cleavage of the substrate results in fluorescence, thus enabling one to image extracellular and intracellular proteolysis by living cells. The Rat1 transfectants accumulated degraded substrate intracellularly. V12rac1 increased accumulation of the fluorescent product in vesicles that also labeled with the lysosomal marker LysoTracker. Treatment of the V12rac1-transfected cells with membrane-permeable inhibitors of lysosomal cysteine proteases and a membrane-permeable selective inhibitor of the cysteine protease cathepsin B significantly reduced intracellular accumulation of degraded substrate, indicating that degradation occurred intracellularly. V12rac1 stimulated uptake of dextran 70 (a marker of macropinocytosis) and polystyrene beads (markers of phagocytosis) into vesicles that also labeled for cathepsin B. Thus, stimulation of the endocytic pathways of macropinocytosis and phagocytosis by activated Rac1 may be responsible for the increased internalization and subsequent degradation of extracellular proteins.  相似文献   

10.
Profilin is a key regulator of actin polymerization, and plays a pivotal role at the interface of the phosphoinositide signal transduction pathway and the cytoskeleton. Recent evidence suggests the involvement of profilin in the regulation of phagocytosis and macropinocytosis, and the transport along the endosomal pathway. Disruption of profilin leads to a complex phenotype that includes abnormal cytokinesis, a block in development and defects in the endosomal pathway. Macropinocytosis, fluid phase efflux and secretion of lysosomal enzymes were reduced, whereas the rate of phagocytosis was increased as compared to wild-type cells. The lmpA gene, a homolog of the CD36/LIMPII family, was identified as a suppressor for most of the profilin-minus defects. This gene encodes an integral membrane protein, it localizes to lysosomes and macropinosomes, and binds to phosphoinositides. Even though phosphatidylinositol lipids constitute only a small fraction of total lipids in the membranes of eukaryotic cells, they play an important role in vesicle transport, signal transduction and cytoskeletal regulation. Disruption of lmpA in wild-type cells resulted in defects in fluid phase efflux and macropinocytosis, but not in phagocytosis. The discovery and initial characterization of two additional members of the CD36/LIMPII family in Dictyostelium, lmpB and lmpC, that exhibit intriguing differences in developmental regulation and their putative sorting signals, suggests that a set of lysosomal integral membrane proteins contribute to the crosstalk between vesicles and cytoskeletal proteins.  相似文献   

11.
12.
Several intracellular pathogens are internalized by host cells via multiple endocytic pathways. It is no different with Trypanosoma cruzi. Evidences indicate that T. cruzi entry may occur by endocytosis/phagocytosis or by an active manner. Although macropinocytosis is largely considered an endocytic process where cells internalize only large amounts of solutes, several pathogens use this pathway to enter into host cells. To investigate whether T. cruzi entry into peritoneal macrophages and LLC-MK2 epithelial cells can be also mediated through a macropinocytosis-like process, we used several experimental strategies presently available to characterize macropinocytosis such as the use of different inhibitors. These macropinocytosis' inhibitors blocked internalization of T. cruzi by host cells. To further support this, immunofluorescence microscopy and scanning electron microscopy techniques were used. Field emission scanning electron microscopy revealed that after treatment, parasites remained attached to the external side of host cell plasma membrane. Proteins such as Rabankyrin 5, tyrosine kinases, Pak1 and actin microfilaments, which participate in macropinosome formation, were localized at T. cruzi entry sites. We also observed co-localization between the parasite and an endocytic fluid phase marker. All together, these results indicate that T. cruzi is able to use multiple mechanisms of penetration into host cell, including macropinocytosis.  相似文献   

13.
The present study characterized two different internalization mechanisms used by macrophages to engulf apoptotic and necrotic cells. Our in vitro phagocytosis assay used a mouse macrophage cell line, and murine L929sAhFas cells that are induced to die in a necrotic way by TNFR1 and heat shock or in an apoptotic way by Fas stimulation. Scanning electron microscopy (SEM) revealed that apoptotic bodies were taken up by macrophages with formation of tight fitting phagosomes, similar to the 'zipper'-like mechanism of phagocytosis, whereas necrotic cells were internalized by a macropinocytotic mechanism involving formation of multiple ruffles directed towards necrotic debris. Two macropinocytosis markers (Lucifer Yellow (LY) and horseradish peroxidase (HRP)) were excluded from the phagosomes containing apoptotic bodies, but they were present inside the macropinosomes containing necrotic material. Wortmannin (phosphatidylinositol 3'-kinase (PI3K) inhibitor) reduced the uptake of apoptotic cells, but the engulfment of necrotic cells remained unaffected. Our data demonstrate that apoptotic and necrotic cells are internalized differently by macrophages.  相似文献   

14.
15.
Profilin is a key phosphoinositide and actin-binding protein connecting and coordinating changes in signal transduction pathways with alterations in the actin cytoskeleton. Using biochemical assays and microscopic approaches, we demonstrate that profilin-null cells are defective in macropinocytosis, fluid phase efflux, and secretion of lysosomal enzymes but are unexpectedly more efficient in phagocytosis than wild-type cells. Disruption of the lmpA gene encoding a protein (DdLIMP) belonging to the CD36/LIMPII family suppressed, to different degrees, most of the profilin-minus defects, including the increase in F-actin, but did not rescue the secretion defect. Immunofluorescence microscopy indicated that DdLIMP, which is also capable of binding phosphoinositides, was associated with macropinosomes but was not detected in the plasma membrane. Also, inactivation of the lmpA gene in wild-type strains resulted in defects in macropinocytosis and fluid phase efflux but not in phagocytosis. These results suggest an important role for profilin in regulating the internalization of fluid and particles and the movement of material along the endosomal pathway; they also demonstrate a functional interaction between profilin and DdLIMP that may connect phosphoinositide-based signaling through the actin cytoskeleton with endolysosomal membrane trafficking events.  相似文献   

16.
An essential feature of dendritic cell immune surveillance is endocytic sampling of the environment for non-self antigens primarily via macropinocytosis and phagocytosis. The role of several members of the myosin family of actin based molecular motors in dendritic cell endocytosis and endocytic vesicle movement was assessed through analysis of dendritic cells derived from mice with functionally null myosin mutations. These include the dilute (myosin Va), Snell's waltzer (myosin VI) and shaker-1 (myosin VIIa) mouse lines. Non muscle myosin II function was assessed by treatment with the inhibitor, blebbistatin. Flow cytometric analysis of dextran uptake by dendritic cells revealed that macropinocytosis was enhanced in Snell's waltzer dendritic cells while shaker-1 and blebbistatin-treated cells were comparable to controls. Comparison of fluid phase uptake using pH insensitive versus pH sensitive fluorescent dextrans revealed that in dilute cells rates of uptake were normal but endosomal acidification was accelerated. Phagocytosis, as quantified by uptake of E. coli, was normal in dilute while dendritic cells from Snell's waltzer, shaker-1 and blebbistatin treated cells exhibited decreased uptake. Microtubule mediated movements of dextran-or transferrin-tagged endocytic vesicles were significantly faster in dendritic cells lacking myosin Va. Loss of myosin II, VI or VIIa function had no significant effects on rates of endocytic vesicle movement.  相似文献   

17.
The cellular slime mold Dictyostelium discoideum is a soil-living eukaryote, which feeds on microorganisms engulfed by phagocytosis. Axenic laboratory strains have been produced that are able to use liquid growth medium internalized by macropinocytosis as the source of food. To better define the macropinocytosis process, we established the inventory of proteins associated with this pathway using mass spectrometry-based proteomics. Using a magnetic purification procedure and high-performance LC-MS/MS proteome analysis, a list of 2108 non-redundant proteins was established, of which 24% featured membrane-spanning domains. Bioinformatics analyses indicated that the most abundant proteins were linked to signaling, vesicular trafficking and the cytoskeleton. The present repertoire validates our purification method and paves the way for a future proteomics approach to study the dynamics of macropinocytosis.  相似文献   

18.
Profilin is a key regulator of actin polymerization, and plays a pivotal role at the interface of the phosphoinositide signal transduction pathway and the cytoskeleton. Recent evidence suggests the involvement of profilin in the regulation of phagocytosis and macropinocytosis, and the transport along the endosomal pathway. Disruption of profilin leads to a complex phenotype that includes abnormal cytokinesis, a block in development and defects in the endosomal pathway. Macropinocytosis, fluid phase efflux and secretion of lysosomal enzymes were reduced, whereas the rate of phagocytosis was increased as compared to wild-type cells. The lmpA gene, a homolog of the CD36/LIMPII family, was identified as a suppressor for most of the profilin-minus defects. This gene encodes an integral membrane protein, it localizes to lysosomes and macropinosomes, and binds to phosphoinositides. Even though phosphatidylinositol lipids constitute only a small fraction of total lipids in the membranes of eukaryotic cells, they play an important role in vesicle transport, signal transduction and cytoskeletal regulation. Disruption of lmpA in wild-type cells resulted in defects in fluid phase efflux and macropinocytosis, but not in phagocytosis. The discovery and initial characterization of two additional members of the CD36/LIMPII family in Dictyostelium, lmpB and lmpC, that exhibit intriguing differences in developmental regulation and their putative sorting signals, suggests that a set of lysosomal integral membrane proteins contribute to the crosstalk between vesicles and cytoskeletal proteins.  相似文献   

19.
《The Journal of cell biology》1996,135(5):1249-1260
Phosphoinositide 3-kinase (PI 3-kinase) has been implicated in growth factor signal transduction and vesicular membrane traffic. It is thought to mediate the earliest steps leading from ligation of cell surface receptors to increased cell surface ruffling. We show here that inhibitors of PI 3-kinase inhibit endocytosis in macrophages, not by interfering with the initiation of the process but rather by preventing its completion. Consistent with earlier studies, the inhibitors wortmannin and LY294002 inhibited fluid-phase pinocytosis and Fc receptor-mediated phagocytosis, but they had little effect on the receptor-mediated endocytosis of diI-labeled, acetylated, low density lipoprotein. Large solute probes of endocytosis reported greater inhibition by wortmannin than smaller probes did, indicating that macropinocytosis was affected more than micropinocytosis. Since macropinocytosis and phagocytosis are actin-mediated processes, we expected that their inhibition by wortmannin resulted from deficient signaling from macrophage colony-stimulating factor (M-CSF) receptors or Fc receptors to the actin cytoskeleton. However, video microscopy showed cell surface ruffling in wortmannin-treated cells, and increased ruffling after addition of M-CSF or phorbol myristate acetate. Quantitative measurements of video data reported slightly diminished ruffling in wortmannin-treated cells. Remarkably, the ruffles that formed in wortmannin-treated macrophages all receded into the cytoplasm without closing into macropinosomes. Similarly, wortmannin and LY294002 did not inhibit the extension of actin-rich pseudopodia along IgG- opsonized sheep erythrocytes, but instead prevented them from closing into phagosomes. These findings indicate that PI 3-kinase is not necessary for receptor-mediated stimulation of pseudopod extension, but rather functions in the closure of macropinosomes and phagosomes into intracellular organelles.  相似文献   

20.
Translocation of bacteria across the intestinal barrier is important in the pathogenesis of systemic sepsis, although the mechanisms by which bacterial translocation occurs remain largely unknown. We hypothesized that bacterial translocation across the intact barrier occurs after internalization of the bacteria by enterocytes in a process resembling phagocytosis and that TLR4 is required for this process. We now show that FcgammaRIIa-transfected enterocytes can internalize IgG-opsonized erythrocytes into actin-rich cups, confirming that these enterocytes have the molecular machinery required for phagocytosis. We further show that enterocytes can internalize Escherichia coli into phagosomes, that the bacteria remain viable intracellularly, and that TLR4 is required for this process to occur. TLR4 signaling was found to be necessary and sufficient for phagocytosis by epithelial cells, because IEC-6 intestinal epithelial cells were able to internalize LPS-coated, but not uncoated, latex particles and because MD2/TLR4-transfected human endothelial kidney (HEK)-293 cells acquired the capacity to internalize E. coli, whereas nontransfected HEK-293 cells and HEK-293 cells transfected with dominant-negative TLR4 bearing a P712H mutation did not. LPS did not induce membrane ruffling or macropinocytosis in enterocytes, excluding their role in bacterial internalization. Strikingly, the internalization of Gram-negative bacteria into enterocytes in vivo and the translocation of bacteria across the intestinal epithelium to mesenteric lymph nodes were significantly greater in wild-type mice as compared with mice having mutations in TLR4. These data suggest a novel mechanism by which bacterial translocation occurs and suggest a critical role for TLR4 in the phagocytosis of bacteria by enterocytes in this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号