首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Metabolic engineering has allowed the production of a diverse number of valuable chemicals using microbial organisms. Many biological challenges for improving bio-production exist which limit performance and slow the commercialization of metabolically engineered systems. Dynamic metabolic engineering is a rapidly developing field that seeks to address these challenges through the design of genetically encoded metabolic control systems which allow cells to autonomously adjust their flux in response to their external and internal metabolic state. This review first discusses theoretical works which provide mechanistic insights and design choices for dynamic control systems including two-stage, continuous, and population behavior control strategies. Next, we summarize molecular mechanisms for various sensors and actuators which enable dynamic metabolic control in microbial systems. Finally, important applications of dynamic control to the production of several metabolite products are highlighted, including fatty acids, aromatics, and terpene compounds. Altogether, this review provides a comprehensive overview of the progress, advances, and prospects in the design of dynamic control systems for improved titer, rate, and yield metrics in metabolic engineering.  相似文献   

4.
Pollination control technologies for hybrid breeding   总被引:2,自引:0,他引:2  
Efforts in hybrid breeding have made this technology one of the main factors contributing to the substantial global rise in agricultural output over the last few decades. For hybrid breeding, an efficient pollination control system is necessary to avoid the unwanted self-pollination or sib-pollination of the female parental line. This review will provide a historical overview of pollination control systems and their use in hybrid crop breeding. We outline the prerequisites for commercial hybrid breeding and summarize the most important non-biological and biological technologies. Our main focus is on hybrid systems that are based on genetically engineered plants. We describe their suitability for pollination control, propagation of the male-sterile crossing partner, fertility restoration and mixed planting. Additionally, we report on the latest findings in the development of inducible sterility systems and various technologies that enable pollination control via metabolic engineering. We discuss the pros and cons of the different pollination control strategies.  相似文献   

5.
The green fluorescent protein (GFP)-nanobody is a single-chain VHH antibody domain developed with specific binding activity against GFP and is emerging as a powerful tool for isolation and cellular engineering of fluorescent protein fusions in many different fields of biological research. Using X-ray crystallography and isothermal titration calorimetry, we determine the molecular details of GFP:GFP-nanobody complex formation and explain the basis of high affinity and at the same time high specificity of protein binding. Although the GFP-nanobody can also bind YFP, it cannot bind the closely related CFP or other fluorescent proteins from the mFruit series. CFP differs from GFP only within the central chromophore and at one surface amino acid position, which lies in the binding interface. Using this information, we have engineered a CFP variant (I146N) that is also able to bind the GFP-nanobody with high affinity, thus extending the toolbox of genetically encoded fluorescent probes that can be isolated using the GFP-nanobody.  相似文献   

6.
7.
Protein splicing is mediated by inteins that auto-catalytically join two separated protein fragments with a peptide bond. Here we engineered a genetically encoded synthetic photoactivatable intein (named LOVInC), by using the light-sensitive LOV2 domain from Avena sativa as a switch to modulate the splicing activity of the split DnaE intein from Nostoc punctiforme. Periodic blue light illumination of LOVInC induced protein splicing activity in mammalian cells. To demonstrate the broad applicability of LOVInC, synthetic protein systems were engineered for the light-induced reassembly of several target proteins such as fluorescent protein markers, a dominant positive mutant of RhoA, caspase-7, and the genetically encoded Ca2+ indicator GCaMP2. Spatial precision of LOVInC was demonstrated by targeting activity to specific mammalian cells. Thus, LOVInC can serve as a general platform for engineering light-based control for modulating the activity of many different proteins.  相似文献   

8.
Synthetic biology uses molecular biology to implement genetic circuits that perform computations. These circuits can process inputs and deliver outputs according to predefined rules that are encoded, often entirely, into genetic parts. However, the field has recently begun to focus on using mechanisms beyond the realm of genetic parts for engineering biological circuits. We analyse the use of electrogenic processes for circuit design and present a model for a merged genetic and electrogenetic toggle switch operating in a biofilm attached to an electrode. Computational simulations explore conditions under which bistability emerges in order to identify the circuit design principles for best switch performance. The results provide a basis for the rational design and implementation of hybrid devices that can be measured and controlled both genetically and electronically.  相似文献   

9.
Natural materials possess many distinctive “living” attributes, such as self-growth, self-healing, environmental responsiveness, and evolvability, that are beyond the reach of many existing synthetic materials. The emerging field of engineered living materials (ELMs) takes inspiration from nature and harnesses engineered living systems to produce dynamic and responsive materials with genetically programmable functionalities. Here, we identify and review two main directions for the rational design of ELMs: first, engineering of living materials with enhanced performances by incorporating functional material modules, including engineered biological building blocks (proteins, polysaccharides, and nucleic acids) or well-defined artificial materials; second, engineering of smart ELMs that can sense and respond to their surroundings by programming dynamic cellular behaviors regulated via cell–cell or cell–environment interactions. We next discuss the strengths and challenges of current ELMs and conclude by providing a perspective of future directions in this promising area.  相似文献   

10.
This essay is an attempt to point up the gap between, on the one hand, the methods currently available to the biologist in the laboratory and, on the other, the kind of data that he or she would need in order to characterise genetically engineered proteins of topical biological interest in such a way as to make use of the techniques of protein engineering.  相似文献   

11.
Genetic engineering of trees to improve productivity, wood quality, and resistance to biotic and abiotic stresses has been the primary goal of the forest biotechnology community for decades. We review the extensive progress in these areas and their current status with respect to commercial applications. Examples include novel methods for lignin modification, solutions for long-standing problems related to pathogen resistance, modifications to flowering onset and fertility, and drought and freeze tolerance. There have been numerous successful greenhouse and field demonstrations of genetically engineered trees, but commercial application has been severely limited by social and technical considerations. Key social factors are costly and uncertain regulatory hurdles and sweeping market barriers in the form of forest certification systems that disallow genetically modified trees. These factors limit and, in many cases, preclude field research and commercial adoption. Another challenge is the high cost and uncertainty in transformation efficiency that is needed to apply genetic engineering and gene editing methods to most species and genotypes of commercial importance. Recent advances in developmental gene-based transformation systems and gene editing, if combined with regulatory and certification system reform, could provide the foundation for genetic engineering to become a significant tool for coping with the increasing environmental and biological stresses on planted and wild forests.  相似文献   

12.
Synthetic gene circuits are designed to program new biological behaviour, dynamics and logic control. For all but the simplest synthetic phenotypes, this requires a structured approach to map the desired functionality to available molecular and cellular parts and processes. In other engineering disciplines, a formalized design process has greatly enhanced the scope and rate of success of projects. When engineering biological systems, a desired function must be achieved in a context that is incompletely known, is influenced by stochastic fluctuations and is capable of rich nonlinear interactions with the engineered circuitry. Here, we review progress in the provision and engineering of libraries of parts and devices, their composition into large systems and the emergence of a formal design process for synthetic biology.  相似文献   

13.
Synthetic biology employs rational engineering principles to build biological systems from the libraries of standard, well characterized biological parts. Biological systems designed and built by synthetic biologists fulfill a plethora of useful purposes, ranging from better healthcare and energy production to biomanufacturing. Recent advancements in the synthesis, assembly and “booting-up” of synthetic genomes and in low and high-throughput genome engineering have paved the way for engineering on the genome-wide scale. One of the key goals of genome engineering is the construction of minimal genomes consisting solely of essential genes (genes indispensable for survival of living organisms). Besides serving as a toolbox to understand the universal principles of life, the cell encoded by minimal genome could be used to build a stringently controlled “cell factory” with a desired phenotype. This review provides an update on recent advances in the genome-scale engineering with particular emphasis on the engineering of minimal genomes. Furthermore, it presents an ongoing discussion to the scientific community for better suitability of minimal or robust cells for industrial applications.  相似文献   

14.
Since tools of modern biotechnology have become available, the most commonly applied and often discussed genetically modified organisms are genetically modified crop plants, although genetic engineering is also being used successfully in organisms other than plants, including bacteria, fungi, insects, and viruses. Many of these organisms, as with crop plants, are being engineered for applications in agriculture, to control plant insect pests or diseases. This paper reviews the genetically modified non-plant organisms that have been the subject of permit approvals for environmental release by the United States Department of Agriculture/Animal and Plant Health Inspection Service since the US began regulating genetically modified organisms. This is an indication of the breadth and progress of research in the area of non-plant genetically modified organisms. This review includes three examples of promising research on non-plant genetically modified organisms for application in agriculture: (1) insects for insect pest control using improved vector systems; (2) fungal pathogens of insects to control insect pests; and (3) virus for use as transient-expression vectors for disease control in plants.  相似文献   

15.
16.
We propose the term "synthetic tissue biology" to describe the use of engineered tissues to form biological systems with metazoan-like complexity. The increasing maturity of tissue engineering is beginning to render this goal attainable. As in other synthetic biology approaches, the perspective is bottom-up; here, the premise is that complex functional phenotypes (on par with those in whole metazoan organisms) can be effected by engineering biology at the tissue level. To be successful, current efforts to understand and engineer multicellular systems must continue, and new efforts to integrate different tissues into a coherent structure will need to emerge. The fruits of this research may include improved understanding of how tissue systems can be integrated, as well as useful biomedical technologies not traditionally considered in tissue engineering, such as autonomous devices, sensors, and manufacturing.  相似文献   

17.
Environmental use of genetically engineered microorganisms has raised concerns about potential ecological impact. This research evaluated the survival, competitiveness, and effects upon selected bacterial genera of wild-type and genetically engineered Erwinia carotovora subsp. carotovora to ascertain if differences between the wild-type and genetically engineered strains exist in soil microcosms. The engineered strain contained a chromosomally inserted gene for kanamycin resistance. No significant differences in survival in nonsterile soil over 2 months or in the competitiveness of either strain were observed when the strains were added concurrently to microcosms. For reasons that remain unclear, the engineered strain did survive longer in sterilized soil. The effects of both strains on total bacteria, Pseudomonas and Staphylococcus strains, and actinomycetes were observed. While some apparent differences were observed, they were not statistically significant. A better understanding of the microbial ecology of engineered bacteria, especially pathogens genetically altered for use as biological control agents, is essential before commercial applications can be accomplished.  相似文献   

18.
Recent studies cast doubt on the value of traditionally used models as tools for testing therapies for human cancer. Although the standard practice of xenografting tumors into immunocompromised mice generates reproducible tumors, drug testing in these models has low predictive power when compared to the clinical responses in Phase II trials. The use of tumor-bearing genetically engineered mouse models holds promise for improving preclinical testing. These models recapitulate specific molecular pathways in tumor initiation or progression and provide a biological system in which to study the disease process for assessing efficacy of new therapies and proof-of-principle for testing molecularly targeted drugs. In this review, we discuss the advantages and limitations of genetically engineered mice and plausible solutions for adapting these valuable tumors for wider use in preclinical testing by transplantation into na?ve recipients. We also provide examples of comparative molecular analysis of mammary tumors from MMTV-Polyoma Middle-T antigen and MMTV-wnt1 models as tools for finding clinical correlates, validating existing models and guiding the development of new genetically engineered mouse models for cancer.  相似文献   

19.
Na D  Lee S  Yi GS  Lee D 《Journal of biotechnology》2011,153(1-2):35-41
Cooperative inter-species interaction is another way of evolution in nature. Such cooperation leading to mutual benefits provides a new view on the interaction of biological systems, and engineering such inter-species interaction offers an opportunity for diverse potential applications in biotechnology. Here we show a synthetic system with artificially created inter-species cooperation of host and virus. A genetically engineered host (Escherichia coli) provides nutrients and energies necessary for virus reproduction, and a genetically engineered virus (phage M13) enhances infected hosts to survive under fatal concentration of antibiotics. We applied the synthetic system to evolve the virus with increasing selective pressure in environment, specifically to evolve a virus-carried heterogeneous gene (luxR), which consequently enhances the ability of infected hosts to survive against antibiotics. As a result we obtained evolved luxR mutants with improved activity by up to 17 folds from a limited number of viruses randomly isolated and generated over a small number of generations. Our synthetic system would provide the significant sight in the principle of system design with regard to the utilization of inter-species cooperation, and also the targeted evolution technique itself. Advancement of the concept of this system would foster more practical and valuable applications.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号