首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
During the last decade the small cruciferous plant Arabidopsis thaliana has become a model organism for flowering plants. Sequencing and analysis of the Arabidopsis genome is nearing completion. Beside an overview on methods and strategies for Arabidopsis genome analysis, a summary of the results from the first analysis is presented.This includes an overview on chromosomal organisation and topological features as well as a first comparison with other genomes.  相似文献   

3.
The complete mitochondrial genome of Flustrellidra hispida (Bryozoa, Ctenostomata, Flustrellidridae) was sequenced using a transposon-mediated approach. All but one of the 36 genes were identified (trnS2). The genome is 13,026 bp long, being one of the smallest metazoan mitochondrial genomes sequenced to date with a unique gene order when compared to other Metazoa. The genome has an overall AT richness of 59.4%. We found seven regions of overlaps between tRNAs and protein-coding genes ranging from 2 to 11 nt, and seven regions of overlap between tRNAs, ranging from 1 to 8 nt, resulting in a total number of 46 overlapping nucleotides. Genes nad4, cox2, atp8, and nad3 are terminated by the abbreviated stop codon T and cytb is suggested to terminate on (ACT)AA; we postulate that mRNA editing is required to remove AC for TAA to be functional in terminating translation. Phylogenetic analysis of nucleotide and amino acid data place Flustrellidra in the Lophotrochozoa. DNA for this study originated from two populations resulting in a contig consisting of multiple haplotypes. Twenty-seven SNP sites were detected, the majority occurring in cox1 and nad5. With cox1 already established as a marker in bryozoan studies, we advocate the further testing of nad5.  相似文献   

4.

Background  

Gastropod mitochondrial genomes exhibit an unusually great variety of gene orders compared to other metazoan mitochondrial genome such as e.g those of vertebrates. Hence, gastropod mitochondrial genomes constitute a good model system to study patterns, rates, and mechanisms of mitochondrial genome rearrangement. However, this kind of evolutionary comparative analysis requires a robust phylogenetic framework of the group under study, which has been elusive so far for gastropods in spite of the efforts carried out during the last two decades. Here, we report the complete nucleotide sequence of five mitochondrial genomes of gastropods (Pyramidella dolabrata, Ascobulla fragilis, Siphonaria pectinata, Onchidella celtica, and Myosotella myosotis), and we analyze them together with another ten complete mitochondrial genomes of gastropods currently available in molecular databases in order to reconstruct the phylogenetic relationships among the main lineages of gastropods.  相似文献   

5.
Meganathan PR  Dubey B  Batzer MA  Ray DA  Haque I 《Gene》2011,484(1-2):35-41
Host-pathogen interactions are complex processes, and revealing these interactions is challenging. Beauveria bassiana is a destructive pathogen to the economically beneficial silkworm, Bombyx mori, but is also a good pathogenic material for investigating insect responses to fungal infection. For better understanding of the molecular regulation of immune response and the interactive mechanism between the silkworm and B. bassiana, suppression subtractive hybridization was employed to identify differentially expressed genes in the pathogen-stimulated silkworm larvae. Complementary DNA libraries were constructed, in which 240 clones were sequenced. A total of 77 genes were found to be involved in the infection process, among which 55 were known genes and 22 were novel. Expression profiling of 6 genes by quantitative PCR showed that they were induced by fungal challenge. This study establishes the first step to understanding the molecular mechanisms by which silkworm responds to fungal infection.  相似文献   

6.
Evolutionary genomics in Metazoa: the mitochondrial DNA as a model system   总被引:21,自引:0,他引:21  
Saccone C  De Giorgi C  Gissi C  Pesole G  Reyes A 《Gene》1999,238(1):195-209
One of the most important aspects of mitochondrial (mt) genome evolution in Metazoa is constancy of size and gene content of mtDNA, whose plasticity is maintained through a great variety of gene rearrangements probably mediated by tRNA genes. The trend of mtDNA to maintain the same genetic structure within a phylum (e.g., Chordata) is generally accepted, although more recent reports show that a considerable number of transpositions are observed also between closely related organisms. Base composition of mtDNA is extremely variable. Genome GC content is often low and, when it increases, the two complementary bases distribute asymmetrically, creating, particularly in vertebrates, a negative GC-skew. In mammals, we have found coding strand base composition and average degree of gene conservation to be related to the asymmetric replication mechanism of mtDNA. A quantitative measurement of mtDNA evolutionary rate has revealed that each of the various components has a different evolutionary rate. Non-synonymous rates are gene specific and fall in a range comparable to that of nuclear genes, whereas synonymous rates are about 22-fold higher in mt than in nuclear genes. tRNA genes are among the most conserved but, when compared to their nuclear counterparts, they evolve 100 times faster. Finally, we describe some molecular phylogenetic reconstructions which have produced unexpected outcomes, and might change our vision of the classification of living organisms.  相似文献   

7.
Theoretical work on multivariate evolution predicts that genetic correlations can act to constrain the rate at which new adaptive peaks are reached, but there is very limited empirical information available on this issue so far. To evaluate the importance of genetic correlations for evolutionary change, we studied the morphological differences between two flycatcher species (Ficeduia albicollis and F. hypoleuca) using both univariate and multivariate quantitative genetic models. Comparison of the results obtained using these different models revealed that even relatively low genetic correlations between traits will considerably increase the net selection forces needed for evolutionary changes in morphology. In particular, the divergence in wing and tail length, which are positively genetically correlated, would require a considerable amount of antagonistic selection. Because of the genetic correlations, strong selection will be needed to retain certain traits unchanged while others are changing. Based on these results, we argue that it is unlikely that small morphological differences such as between these two species could have evolved during a short (200 years) time period, i.e. the period of sympatry of these species in Sweden. These findings support the hypothesis that even relatively low genetic correlations may constrain short-term adaptive evolution in natural populations.  相似文献   

8.
Mitochondrial glutamyl-tRNA isolated from mitochondria of Saccharomyces cerevisiae was separated into two distinct species by re versed-phase chromatography. The migration of the two mitochondrial glutamyl-tRNAs (tRNAIGlu and tRNAIIGlu) differed from that of two glutamyl-tRNA species found in the cytoplasm of a mitochondrial DNA-less petite strain. Both mitochondrial tRNAs hybridized with mitochondrial DNA. Three lines of evidence demonstrate that mitochondrial tRNAIGlu and tRNAIIGlu are transcribed from different mitochondrial cistrons. First the level of hybridization of a mixture of the two tRNAs to mitochondrial DNA was equal to the sum of the saturation hybridization levels of each glutamyl-tRNA alone. Second, the two mitochondrial glutamyl-tRNAs did not compete with each other in hybridization competition experiments. Finally the tRNAs showed individual hybridization patterns with different petite mitochondrial DNAs.Hybridization of the tRNAs to mitochondrial DNA of genetically defined petite strains localized each tRNA with respect to antibiotic resistance markers. The two glutamyl-tRNA cistrons were spatially separated on the genetic map.  相似文献   

9.
We have determined the complete mitochondrial DNA (mtDNA) sequences of three chytridiomycete fungi, Monoblepharella15, Harpochytrium94 and Harpochytrium105. Our phylogenetic analysis based on concatenated mitochondrial protein sequences confirms the placement of Mono blepharella15 together with Harpochytrium spp. and Hyaloraphidium curvatum within the taxonomic order Monoblepharidales, with overwhelming support. These four mtDNA sequences encode the standard fungal mitochondrial gene complement and, like certain other chytridiomycete fungi, encode a reduced complement of 7–9 tRNAs, some of which require 5′-tRNA editing to be functional. Highly conserved sequence elements were identified upstream of almost all protein-coding genes in the mtDNAs of Monoblepharella15 and both Harpochytrium species. Finally, a guanosine residue is conserved upstream of the predicted ATG or GTG start codons of almost every protein-coding gene in these genomes. The appearance of this G residue correlates with the presence of a non-canonical cytosine residue at position 37 in the anticodon loop of the mitochondrial initiator tRNAs. Based on the unorthodox features in these four genomes, we propose that a 4 bp interaction between the CAUC anticodon of these tRNAs and GAUG/GGUG codons is involved in translation initiation in monoblepharidalean mitochondria. Intriguingly, a similar interaction may also be involved in mitochondrial translation initiation in the sea anemone Metridium senile.  相似文献   

10.
The application of a new gene-based strategy for sequencing the wheat mitochondrial genome shows its structure to be a 452528 bp circular molecule, and provides nucleotide-level evidence of intra-molecular recombination. Single, reciprocal and double recombinant products, and the nucleotide sequences of the repeats that mediate their formation have been identified. The genome has 55 genes with exons, including 35 protein-coding, 3 rRNA and 17 tRNA genes. Nucleotide sequences of seven wheat genes have been determined here for the first time. Nine genes have an exon–intron structure. Gene amplification responsible for the production of multicopy mitochondrial genes, in general, is species-specific, suggesting the recent origin of these genes. About 16, 17, 15, 3.0 and 0.2% of wheat mitochondrial DNA (mtDNA) may be of genic (including introns), open reading frame, repetitive sequence, chloroplast and retro-element origin, respectively. The gene order of the wheat mitochondrial gene map shows little synteny to the rice and maize maps, indicative that thorough gene shuffling occurred during speciation. Almost all unique mtDNA sequences of wheat, as compared with rice and maize mtDNAs, are redundant DNA. Features of the gene-based strategy are discussed, and a mechanistic model of mitochondrial gene amplification is proposed.  相似文献   

11.
Summary Mitochondrial DNAs from Nicotiana tabacum, an amphiploid, and its putative progenitor species, N. sylvestris and N. tomentosiformis were compared in structure and organization. By using DNA transfer techniques and cloned fragments of known genes from maize and N. sylvestris as labeled probes, the positions of homologous sequences in restriction digests of the Nicotiana species were analyzed. Results indicate that the mitochondrial DNA of N. tabacum was inherited from N. sylvestris. Conservation in organization and sequence homology between mtDNAs of N. tabacum and the maternal progenitor, N. sylvestris, provide evidence that the mitochondrial genome in these species is evolutionarily stable. Approximately one-third of the probed restriction fragments of N. tomentosiformis mtDNA showed conservation of position with the other two species. Pattern variations indicate that extensive rearrangement of mtDNA has occurred in the evolution of these Nicotiana species.  相似文献   

12.
《Genomics》2020,112(5):3056-3064
Here, the complete mitochondrial genome (mitogenome) of Drawida gisti was sequenced and compared with the mitogenomes of other Metagynophora species. The circular mitogenome was 14,648 bp in length and contained two ribosomal RNA genes (rRNAs), 13 protein-coding genes (PCGs), and 22 transfer RNA genes (tRNAs). The types of constitutive genes and the direction of the coding strand that appeared in Drawida mitogenome were identical to those observed in other Metagynophora species, except for a missing lengthy non-coding region. The conservative relationships between Drawida species were supported by the overall analyses of 13 PCGs, two rRNAs, and 22 tRNAs. A comparison of the Metagynophora mitogenomes revealed that the ATP8 gene possessed the highest polymorphism among the 13 PCGs and two rRNAs. Phylogenetic analysis suggested that the Moniligastridae contained Drawida, which is a primitive Metagynophora group. Our study provides a step forward toward elucidating the evolutionary linkages within Drawida and even Metagynophora.  相似文献   

13.
We report the complete nucleotide sequence of the Tetrahymena pyriformis mitochondrial genome and a comparison of its gene content and organization with that of Paramecium aurelia mtDNA. T. pyriformis mtDNA is a linear molecule of 47,172 bp (78.7 % A+T) excluding telomeric sequences (identical tandem repeats of 31 bp at each end of the genome). In addition to genes encoding the previously described bipartite small and large subunit rRNAs, the T. pyriformis mitochondrial genome contains 21 protein-coding genes that are clearly homologous to genes of defined function in other mtDNAs, including one (yejR) that specifies a component of a cytochrome c biogenesis pathway. As well, T. pyriformis mtDNA contains 22 open reading frames of unknown function larger than 60 codons, potentially specifying proteins ranging in size from 74 to 1386 amino acid residues. A total of 13 of these open reading frames ("ciliate-specific") are found in P. aurelia mtDNA, whereas the remaining nine appear to be unique to T. pyriformis; however, of the latter, five are positionally equivalent and of similar size in the two ciliate mitochondrial genomes, suggesting they may also be homologous, even though this is not evident from sequence comparisons. Only eight tRNA genes encoding seven distinct tRNAs are found in T. pyriformis mtDNA, formally confirming a long-standing proposal that most T. pyriformis mitochondrial tRNAs are nucleus-encoded species imported from the cytosol. Atypical features of mitochondrial gene organization and expression in T. pyriformis mtDNA include split and rearranged large subunit rRNA genes, as well as a split nad1 gene (encoding subunit 1 of NADH dehydrogenase of respiratory complex I) whose two segments are located on and transcribed from opposite strands, as is also the case in P. aurelia. Gene content and arrangement are very similar in T. pyriformis and P. aurelia mtDNAs, the two differing by a limited number of duplication, inversion and rearrangement events. Phylogenetic analyses using concatenated sequences of several mtDNA-encoded proteins provide high bootstrap support for the monophyly of alveolates (ciliates, dinoflagellates and apicomplexans) and slime molds.  相似文献   

14.
Determining the phylogenetic position of enigmatic phyla such as Chaetognatha is a longstanding challenge for biologists. Chaetognaths (or arrow worms) are small, bilaterally symmetrical metazoans. In the past decades, their relationships within the metazoans have been strongly debated because of embryological and morphological features shared with the two main branches of Bilateria: the deuterostomes and protostomes. Despite recent attempts based on molecular data, the Chaetognatha affinities have not yet been convincingly defined. To answer this fundamental question, we determined the complete mitochondrial DNA genome of Spadella cephaloptera. We report three unique features: it is the smallest metazoan mitochondrial genome known and lacks both atp8 and atp6 and all tRNA genes. Furthermore phylogenetic reconstructions show that Chaetognatha belongs to protostomes. This implies that some embryological characters observed in chaetognaths, such as a gut with a mouth not arising from blastopore (deuterostomy) and a mesoderm derived from archenteron (enterocoely), could be ancestral features (plesiomorphies) of bilaterians.  相似文献   

15.
Background and AimsThe dynamics of genome evolution caused by whole genome duplications and other processes are hypothesized to shape the diversification of plants and thus contribute to the astonishing variation in species richness among the main lineages of land plants. Ferns, the second most species-rich lineage of land plants, are highly suitable to test this hypothesis because of several unique features that distinguish fern genomes from those of seed plants. In this study, we tested the hypothesis that genome diversity and disparity shape fern species diversity by recording several parameters related to genome size and chromosome number.MethodsWe conducted de novo measurement of DNA C-values across the fern phylogeny to reconstruct the phylogenetic history of the genome space occupation in ferns by integrating genomic parameters such as genome size, chromosome number and average DNA amount per chromosome into a time-scaled phylogenetic framework. Using phylogenetic generalized least square methods, we determined correlations between chromosome number and genome size, species diversity and evolutionary rates of their transformation.Key ResultsThe measurements of DNA C-values for 233 species more than doubled the taxon coverage from ~2.2 % in previous studies to 5.3 % of extant diversity. The dataset not only documented substantial differences in the accumulation of genomic diversity and disparity among the major lineages of ferns but also supported the predicted correlation between species diversity and the dynamics of genome evolution.ConclusionsOur results demonstrated substantial genome disparity among different groups of ferns and supported the prediction that alterations of reproductive modes alter trends of genome evolution. Finally, we recovered evidence for a close link between the dynamics of genome evolution and species diversity in ferns for the first time.  相似文献   

16.
Recent advances in paleontology, genome analysis, genetics and embryology raise a number of questions about the origin of Animal Kingdom. These questions include: (1) seemingly simultaneous appearance of diverse Metazoan phyla in Cambrian period, (2) similarities of genomes among Metazoan phyla of diverse complexity, (3) seemingly excessive complexity of genomes of lower taxons, and (4) similar genetic switches of functionally similar but non-homologous developmental programs. Here I propose an experimentally testable hypothesis of Universal Genome that addresses these questions. According to this model, (a) the Universal Genome that encodes all major developmental programs essential for various phyla of Metazoa emerged in a unicellular or a primitive multicellular organism shortly before the Cambrian period; (b) The Metazoan phyla, all having similar genomes, are nonetheless so distinct because they utilize specific combinations of developmental programs. This model has two major predictions, first that a significant fraction of genetic information in lower taxons must be functionally useless but becomes useful in higher taxons, and second that one should be able to turn on in lower taxons some of the complex latent developmental programs, e.g. a program of eye development or antibody synthesis in sea urchin. An example of natural turning on of a complex latent program in a lower taxon is discussed.  相似文献   

17.
A Ricroch  R Yockteng  S C Brown  S Nadot 《Génome》2005,48(3):511-520
Allium L. (Alliaceae), a genus of major economic importance, exhibits a great diversity in various morphological characters and particularly in life form, with bulbs and rhizomes. Allium species show variation in several cytogenetic characters such as basic chromosome number, ploidy level, and genome size. The purpose of the present investigation was to study the evolution of nuclear DNA amount, GC content, and life form. A phylogenetic approach was used on a sample of 30 Allium species, including major vegetable crops and their wild allies, belonging to the 3 major subgenera Allium, Amerallium, and Rhizirideum and 14 sections. A phylogeny was constructed using internal transcribed spacer (ITS) sequences of 43 accessions representing 30 species, and the nuclear DNA amount and the GC content of 24 Allium species were investigated by flow cytometry. For the first time, the nuclear DNA content of Allium cyaneum and Allium vavilovii was measured, and the GC content of 16 species was measured. We addressed the following questions: (i) Is the variation in nuclear DNA amount and GC content linked to the evolutionary history of these edible Allium species and their wild relatives? (ii) How did life form (rhizome or bulb) evolve in edible Allium? Our results revealed significant interspecific variation in the nuclear DNA amount as well as in the GC content. No correlation was found between the GC content and the nuclear DNA amount. The reconstruction of nuclear DNA amount on the phylogeny showed a tendency towards a decrease in genome size within the genus. The reconstruction of life form history showed that rhizomes evolved in the subgenus Rhizirideum from an ancestral bulbous life form and were subsequently lost at least twice independently in this subgenus.  相似文献   

18.
Plant–pollinator interactions determine reproductive success for animal-pollinated species and, in the case of invasive plants, they are supposed to play an important role in invasive success. We compared the invasive Senecio inaequidens to its native congener S. jacobaea in terms of interactions with pollinators. Visitor guild, visitation rate, and seed set were compared over 3 years in three sites in Belgium. Floral display (capitula number and arrangement) and phenology were quantified, and visiting insects were individually censused, i.e. number of visited capitula and time per visited capitulum. As expected from capitula resemblance, visitor guilds of both species were very similar (proportional similarity = 0.94). Senecio inaequidens was visited by 33 species, versus 36 for S. jacobaea. For both species, main visitors were Diptera, especially Syrphidae, and Hymenoptera. Visitation rate averaged 0.13 visitor per capitulum per 10 min for S. inaequidens against 0.08 for S. jacobaea. However, insects visited more capitula per plant on S. jacobaea, due to high capitula density (886 m−2 versus 206 m−2 for S. inaequidens), which is likely to increase self-pollen deposition considerably. Seed set of S. jacobaea was lower than that of S. inaequidens. We suggest that floral display is the major factor explaining the differences in insect visitation and seed set between the two Senecio species.  相似文献   

19.
We investigate the plausibility of sympatric speciation through a modelling study. We built up a series of models with increasing complexity while focussing on questioning the realism of model assumptions by checking them critically against a particular biological system, namely the sympatric benthic and limnetic species of threespine stickleback in British Columbia, Canada. These are morphologically adapted to their feeding habits: each performs better in its respective habitat than do hybrids with intermediate morphology. Ecological character displacement through disruptive selection and competition, and reinforcement through mating preferences may have caused their divergence. Our model assumptions include continuous morphological trait(s) instead of a dimorphic trait, and mating preferences based on the same trait(s) as selected for in food competition. Initially, morphology is intermediate. We apply disruptive selection against intermediates, frequency-dependent resource competition, and one of two alternative mating preference mechanisms. Firstly, preference is based on similarity where mating preference may result from “imprinting” on conspecifics encountered in their preferred foraging habitat. Here, speciation occurs easily—ecological hybrid inferiority is not necessary. Hybrid inferiority reinforces the stringency of assortative mating. Secondly, individual preferences exist for different trait values. Here, speciation occurs when linkage disequilibrium between trait and preference develops, and some hybrid inferiority is required. Finally, if the morphology subject to disruptive selection, frequency-dependent competition, and mate choice, is coded for by two loci, linkage disequilibrium between the two loci is required for speciation. Speciation and reinforcement of stringency of choosiness are possible in this case too, but rarely. Results demonstrate the contingency of speciation, with the same starting point not necessarily producing the same outcome. The study resulted in flagging issues where models often lack in biological realism and issues where more empirical studies could inform on whether assumptions are likely valid.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号