首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The guanine nucleotide-binding proteins (G proteins), which transduce hormonal and light signals across the plasma membrane, are heterotrimers composed of alpha, beta, and gamma subunits. Activation of G proteins by guanine nucleotides is accompanied by dissociation of the heterotrimer: G + alpha.beta.gamma in equilibrium alpha G + beta.gamma. Brain contains several G proteins of which the most abundant are alpha 39.beta.gamma and alpha 41.beta.gamma. We have used proteolysis by trypsin to study the functional domains of the alpha subunits. In the presence of guanosine 5'-(3-O-thio)triphosphate, trypsin removes a 2-kDa peptide from the amino terminus of these proteins (Hurley, J. B., Simon, M. I., Teplow, D. B., Robishaw, J. D., and Gilman, A. G. (1984) Science 226, 860-862; Winslow, J. W., Van Amsterdam, J. R., and Neer, E. J. (1986) J. Biol. Chem. 261, 7571-7579). Tryptic cleavage does not affect the GTPase activity of the truncated molecule nor the apparent Km for GTP. However, removal of the 2-kDa amino-terminal peptide prevents association of the alpha subunits with beta.gamma. Since the apparent substrate for pertussis toxin-catalyzed ADP-ribosylation is the alpha.beta.gamma heterotrimer, the trypsin-cleaved alpha subunit is not a substrate for the toxin. Digestion of the carboxyl terminus of alpha 39 with carboxypeptidase A prevents ADP-ribosylation by pertussis toxin but does not interfere with the formation of alpha 39.beta.gamma heterotrimers. We do not yet know whether the amino-terminal region of alpha 39 interacts with beta gamma directly or whether it is necessary to maintain a conformation of alpha 39 which is required for heterotrimer formation. Further studies are needed to define the nature of the contracts between alpha and beta gamma subunits since understanding the structural basis for their reversible interaction is fundamental to understanding their function.  相似文献   

2.
Dopaminergic and glutamatergic signalling cascades are integrated in striatal medium spiny neurones by cyclic AMP response-element binding protein and Elk-1 phosphorylation. Phosphorylated cyclic AMP response-element binding protein and phosphorylated Elk-1 contribute to c-fos expression by binding to the calcium and cyclic AMP response-element and the serum response element, respectively, in the c-fos promoter. The role of cyclic AMP and mitogen-activated protein kinase signalling cascades in glutamate-induced cyclic AMP response-element binding protein and Elk-1 phosphorylation and Fos expression was investigated using semiquantitative immunocytochemistry in vivo. Intracerebroventricular infusion of the sodium channel blocker, tetrodotoxin, decreased the glutamate-induced increase in phosphorylated cyclic AMP response-element binding protein, phosphorylated Elk-1, and Fos immunoreactivity. Intracerebroventricular infusion of the mitogen-activated and extracellular signal-regulated kinase inhibitor, PD98059, the p38 mitogen-activated protein kinase inhibitor, SB203580, or the cyclic AMP inhibitor, Rp-8-Br-cAMPS, decreased glutamate-induced phosphorylated cyclic AMP response-element binding protein, phosphorylated Elk-1, and Fos immunoreactivity. Simultaneous infusion of glutamate and Sp-8-Br-cAMPS, a cyclic AMP analogue, augmented induction of Fos immunoreactivity but not phosphorylated cyclic AMP response-element binding protein or phosphorylated Elk-1 immunoreactivity. These data indicate that cyclic AMP and mitogen-activated protein kinase signalling cascades are necessary for glutamate to induce cyclic AMP response-element binding protein and Elk-1 phosphorylation and Fos expression in the striatum. Furthermore, neuronal activity plays an important role in glutamate-induced signalling cascades in vivo.  相似文献   

3.
4.
5.
6.
7.
We determine whether the cyclic AMP signal transduction pathway affects phosphorylation of cyclic AMP response element binding protein and increases muscle gene expression in the heart. Elevation of cyclic AMP results in phosphorylation of the binding protein which is detected using an antibody specific for the phosphorylated, but not the unphosphorylated, form. The protein is present, but not phosphorylated, within the nuclei of myocytes in intact neonatal rat hearts and in high-density cultures. It is not expressed in low-density cultures. Increasing the amount of phosphorylated cyclic AMP with either isoproterenol or forskolin also increases the frequency and force of the beating. The phosphorylated form of the response element binding protein is visible in the nuclei by 10 min and persists for 2 h of drug treatment. A 1.5-fold increase in skeletal α-actin and α-myosin gene expression is detected after 48 h of isoproterenol treatment. However, blockage of beating with a calcium channel blocker (verapamil) in the presence of cyclic AMP results in a similar increased gene expression. This suggests that muscle gene expression can be regulated directly by the cyclic AMP pathway, probably via phosphorylation of the cyclic AMP response element binding protein but independent of contractile activity. Received: 1 December 1995 / Accepted: 2 May 1996  相似文献   

8.
In polyomavirus-transformed cells, pp60c-src is activated by association with polyomavirus middle T antigen. These complexes have a higher tyrosine kinase activity compared with that of unassociated pp60c-src. Genetic analyses have revealed that the carboxy-terminal 15 amino acids of pp60c-src and the amino-terminal half of middle T antigen are required for this association and consequent activation of the tyrosine kinase. To define in greater detail the borders of the domain in middle T antigen required for activation of pp60c-src, we constructed a set of unidirectional amino-terminal deletion mutants of middle T antigen. Analysis of these mutants revealed that the first six amino acids of middle T antigen are required for it to activate the kinase activity of pp60c-src and to transform Rat-1 fibroblasts. Analysis of a series of insertion and substitution mutants confirmed these observations and further revealed that mutations affecting the first four amino acids of middle T antigen reduced or abolished its capacity to activate the kinase activity of pp60c-src and to transform Rat-1 cells in culture. Our results suggest that the first four amino acids of middle T antigen constitute part of a domain required for activation of the pp60c-src tyrosyl kinase activity and for consequent cellular transformation.  相似文献   

9.
10.
Interdomain interaction of apo-cyclic AMP receptor protein (apo-CRP) was qualified using its isolated domains. The cAMP-binding domain was prepared by a limited proteolysis, while the DNA-binding domain was constructed as a recombinant protein. Three different regions making interdomain contacts in apo-CRP were identified by a sequence-specific comparison of the HSQC spectra. The results indicated that apo-CRP possesses characteristic modules of interdomain interaction that are properly organized to suppress activity and to sense and transfer the cAMP binding signals. Particularly, the inertness of the DNA-binding motif in apo-CRP was attributable to the participation of F-helices in the interdomain contacts.  相似文献   

11.
12.
The optimal activation of cAMP-responsive element binding protein (CREB), similar to the full activation of T lymphocytes, requires the stimulation of both CD3 and CD28. Using a reporter system to detect interaction of CREB and CREB-binding protein (CBP), in this study we found that CREB binds to CBP only by engagement of both CD3 and CD28. CD3/CD28-promoted CREB-CBP interaction was dependent on p38 mitogen-activated protein kinase (MAPK) and calcium/calmodulin-dependent protein kinase (CaMK) IV in addition to the previously identified extracellular signal-regulated kinase pathway. Extracellular signal-regulated kinase, CaMKIV, and p38 MAPK were also the kinases involved in CREB Ser(133) phosphorylation induced by CD3/CD28. A reconstitution experiment illustrated that optimum CREB-CBP interaction and CREB trans-activation were attained when these three kinase pathways were simultaneously activated in T cells. Our results demonstrate that coordinated activation of different kinases leads to full activation of CREB. Notably, CD28 ligation activated p38 MAPK and CaMKIV, the kinases stimulated by CD3 engagement, suggesting that CD28 acts by increasing the activation extent of p38 MAPK and CaMKIV. These results support the model of a minimum activation threshold for CREB-CBP interaction that can be reached only when both CD3 and CD28 are stimulated.  相似文献   

13.
14.
15.
16.
A simplified and inexpensive protein binding assay for cAMP has been developed for the rapid measurement of subpicomole quantities of the nucleotide. Conditions of assay were established in which interferences from salts and nucleotides present in biological samples were eliminated. Sodium chloride was demonstrated to reduce cAMP binding by denaturing the regulatory subunit of the protein kinase.  相似文献   

17.
Parathyroid hormone (PTH) activates multiple signaling pathways following binding to the PTH1 receptor in osteoblasts. Previous work revealed a discrepancy between cAMP stimulation and CRE reporter activation of truncated PTH peptides, suggesting that additional signaling pathways contribute to activation of the CRE. Using a CRE‐Luciferase reporter containing multiple copies of the CRE stably transfected into the osteoblastic cell line Saos‐2, we tested the ability of modulators of alternative pathways to activate the CRE or block the PTH‐induced activation of the CRE. Activators of non‐cyclic AMP pathways, that is, EGF (Akt, MAPK, JAK/STAT pathways); thapsigargin (intracellular calcium pathway); phorbol myristate acetate (protein kinase C, PKC pathway) induced minor increases in CRE‐luciferase activity alone but induced dramatic synergistic effects in combination with PTH. The protein kinase A (PKA) inhibitor H‐89 (10 µM) almost completely blocked PTH‐induced activation of the CRE‐reporter. Adenylate cyclase inhibitors SQ 22536 and DDA had profound and time‐dependent biphasic effects on the CRE response. The MAPK inhibitor PD 98059 partially inhibited basal and PTH‐induced CRE activity to the same degree, while the PKC inhibitor bisindolylmaleimide (BIS) had variable effects. The calmodulin kinase II inhibitor KN‐93 had no significant effect on the response to PTH. We conclude that non‐cAMP pathways (EGF pathway, calcium pathway, PKC pathway) converge on, and have synergistic effects on, the response of a CRE reporter to PTH. J. Cell. Biochem. 106: 887–895, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号