首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We addressed the possible effects of several climate scenarios on habitat suitability (HS) for the cattle tick Boophilus microplus and the probability of producing permanent populations from introduced females of that tick in central parts of Argentina, using both a correlative model (derived from climate predictors) and a mechanistic (life cycle) model. There was high correlation (R2 = 0.866) between HS-derived and life cycle outputs for HS values higher than 0.52, suggesting that HS is a good estimator of the life cycle of the tick above a critical threshold of HS values. Scenarios with increased temperatures increased suitable habitats for the tick in southern parts of the study region, extending below parallel 34 degrees S, but suitable habitats remained limited in the west. A concurrent increase in rainfall produced a further increase of HS in these areas. Results from the life cycle model suggest that in areas of suitable habitat, permanent cattle tick populations are most probable if engorged females are introduced during mid-summer.  相似文献   

2.
殷刚  孟现勇  王浩  胡增运  孙志群 《生态学报》2017,37(9):3149-3163
干旱区植被生态系统对气候变化极为敏感,并且干旱区的植被变化研究对全球碳循环具有重要意义。然而近几十年来,中亚干旱区植被对气候变化的响应机制尚不甚明朗。利用归一化植被指数NDVI数据集和MERRA(Modern-Era Retrospective Analysis for Research and Applications)气象数据,采用经验正交函数(EOF,Empirical Orthogonal Function)和最小二乘法等方法系统分析了31a(1982-2012年)来中亚地区NDVI在不同时间尺度的时空变化特征。进一步分析和研究NDVI与气温和降水的相关性,结果表明:1982-2012年,中亚地区年NDVI总体呈现缓慢增长趋势,而1994年以后年NDVI呈现明显下降趋势,尤其在哈萨克斯坦北部草原地区下降趋势尤为突出。这可能是由于过去30年间,中亚地区降水累计量的持续减少造成的。NDVI的季节变化表明春季NDVI增长最为明显,冬季则显著下降。与平原区相比,中亚山区的NDVI值增长幅度最大,并且山区年NDVI与季节NDVI呈现显著增加趋势(P < 0.05)。中亚地区年NDVI与年降水量正相关,而年NDVI与气温变化存在弱负相关。年NDVI和气温的正相关中心在中亚南部地区,负相关中心则出现在哈萨克斯坦的西部和北部地区;NDVI和降水的相关性中心刚好与气温相反。此外,在近30年间的每年6月至9月,中亚地区NDVI与气温存在近一个月的时间延迟现象。本研究为中亚干旱区生态系统变化和中亚地区碳循环的估算提供科学依据。  相似文献   

3.
《农业工程》2014,34(1):7-12
Vegetation variation is an important topic of global change research, which is of great significance to deeply understand the relationship between vegetation and global change or human activities, and to disclose regional environment evolution and transition. The dynamics of forest vegetation in the mid-subtropical zone have received little attention. Thus, this paper takes the typical distribution area of the subtropical forest ecosystem — Jinggangshan City in Jiangxi Province as a study area. The changes within the year, inter-annual changes trend and spatial variation of the mid-subtropical forest vegetation index during the recent 10 years are analyzed based on MODIS NDVI data from 2000–2011 with the spatial resolution of 250 m. The Savitzky–Golay filter is used to smooth the original MODIS NDVI data. The forest distribution data is taken as the mask to eliminate the impact of non-forest cover area. The results showed that: (1) The changes of forest vegetation index within the year present a single peak mode with the maximum value in July; in the past 10 years, the forest vegetation index fluctuated with a downward trend; NDVI values were high and stable in summer and autumn, but low and unstable in winter; (2) The distribution of NDVI values of forest vegetation had great spatial difference. The NDVI values were low in the area nearby non-forest area in the north, where the non-forest vegetation is widely distributed. The NDVI values were high in the northwestern and southeastern areas. The distribution of NDVI values are comparatively even in the middle area with the NDVI values of more than 0.7; (3) High NDVI values (>0.75) distributed most in the northwestern and southeastern areas with the altitude of 400–600 m. Low NDVI values (<0.65) distributed mostly in the northern areas with the altitude less than 400 m. As for different altitude zones, NDVI values are high in the area with altitude of 400–800 m and low in the area with altitude below 400 m or above 1200 m. There is an agreement between the spatial distribution of the NDVI value of forest vegetation and regional topography, because topography has great impacts on the distribution of forest types which are different in coverage; (4) The NDVI value of forest vegetation presents a downward trend in the northern area, but an increasing trend in the southern area. The vegetation coverage tends to decrease with high population density and intensive distribution of township and scenic spot.  相似文献   

4.
植被对改善黄土高原脆弱的生态环境有着关键作用,系统研究黄土高原归一化植被指数(NDVI)空间分布和环境因子的空间关联性,可为新时代黄土高原植被高质量建设提供科学依据。以黄土高原2000-2017年年均植被NDVI为研究对象,选取气候要素、地形因素、土壤类型和植被类型等自然环境因子,运用GIS和地理探测器技术手段,在剔除土地利用类型发生变化栅格的基础上,研究黄土高原年均NDVI与环境因子的空间关联性,结果表明:2000-2017年黄土高原年均NDVI值在0.016-0.72之间,呈地带性分布,由西北部向东南部逐渐升高,大于0.3的区域占50.23%;2000-2017年黄土高原年均植被NDVI分布具有空间异质性,且在不同植被区、地貌区、土壤区和气候区中,NDVI空间分布的主要环境驱动因子具有差异性。年均降雨量对NDVI空间分布具有强解释力,是黄土高原85.20%的区域植被生长的主要制约因子;约12.01%的区域主要受土壤类型影响,为中等解释力,其余区域的植被生长主要受年均气温,日照时数或海拔影响。建议综合考虑不同环境条件下植被NDVI的空间分布与环境影响因子的空间关联性,明确不同区域中植被NDVI的环境制约因子,以制约因子定植,在防止土壤干燥化、贫瘠化的前提下,提高植被覆盖率和生物多样性,以期促进黄土高原植被建设高质量发展。  相似文献   

5.
Over the last century the Northern Hemisphere has experienced rapid climate warming, but this warming has not been evenly distributed seasonally, as well as diurnally. The implications of such seasonal and diurnal heterogeneous warming on regional and global vegetation photosynthetic activity, however, are still poorly understood. Here, we investigated for different seasons how photosynthetic activity of vegetation correlates with changes in seasonal daytime and night‐time temperature across the Northern Hemisphere (>30°N), using Normalized Difference Vegetation Index (NDVI) data from 1982 to 2011 obtained from the Advanced Very High Resolution Radiometer (AVHRR). Our analysis revealed some striking seasonal differences in the response of NDVI to changes in day‐ vs. night‐time temperatures. For instance, while higher daytime temperature (Tmax) is generally associated with higher NDVI values across the boreal zone, the area exhibiting a statistically significant positive correlation between Tmax and NDVI is much larger in spring (41% of area in boreal zone – total area 12.6 × 10km2) than in summer and autumn (14% and 9%, respectively). In contrast to the predominantly positive response of boreal ecosystems to changes in Tmax, increases in Tmax tended to negatively influence vegetation growth in temperate dry regions, particularly during summer. Changes in night‐time temperature (Tmin) correlated negatively with autumnal NDVI in most of the Northern Hemisphere, but had a positive effect on spring and summer NDVI in most temperate regions (e.g., Central North America and Central Asia). Such divergent covariance between the photosynthetic activity of Northern Hemispheric vegetation and day‐ and night‐time temperature changes among different seasons and climate zones suggests a changing dominance of ecophysiological processes across time and space. Understanding the seasonally different responses of vegetation photosynthetic activity to diurnal temperature changes, which have not been captured by current land surface models, is important for improving the performance of next generation regional and global coupled vegetation‐climate models.  相似文献   

6.
Aim Climate change has the potential to have an impact on the distribution of ticks and tick‐borne diseases. This paper identifies the changes in climate suitability for the tick Rhipicephalus (Boophilus) microplus in the Americas by analysing climate data for the period 1950–99. Location The model was applied to the American continent. Methods A model based on Environmental Niche Modelling was used on a gridded (0.5°) long‐term (1950–99) climate data set. A map of the core range of the species was constructed, and areas where habitat suitability (HS) changes suddenly over short time periods were identified as regions of high sensitivity. Tendency of climate in the continent was evaluated and scenarios constructed for 2025 and 2050. Results Regions of high sensitivity included the southern USA, Mexico and western and central Argentina. Analysis of climate variables in these regions identified water vapour pressure deficit and evaporation as underlying the high sensitivity of habitat suitability in the USA and Mexico, and showed that episodes of high variability are linked to the El Niño Southern Oscillation. Projections of the tendency of HS as observed for the 1950–99 period point to an increase in this value in parts of the southern USA and in central Argentina, a finding that can be attributed to the progressive increase in minimum and yearly averaged temperatures. Conclusions Short‐term changes in climate may drive the system into unstable situations with sudden changes in habitat suitability for the target tick in specific zones of the Americas. Results suggest an increased abiotic (climate) suitability for R. microplus in areas whose habitat is currently unsuitable for this species.  相似文献   

7.
Global vegetation models predict rapid poleward migration of tundra and boreal forest vegetation in response to climate warming. Local plot and air‐photo studies have documented recent changes in high‐latitude vegetation composition and structure, consistent with warming trends. To bridge these two scales of inference, we analyzed a 24‐year (1986–2010) Landsat time series in a latitudinal transect across the boreal forest‐tundra biome boundary in northern Quebec province, Canada. This region has experienced rapid warming during both winter and summer months during the last 40 years. Using a per‐pixel (30 m) trend analysis, 30% of the observable (cloud‐free) land area experienced a significant (P < 0.05) positive trend in the Normalized Difference Vegetation Index (NDVI). However, greening trends were not evenly split among cover types. Low shrub and graminoid tundra contributed preferentially to the greening trend, while forested areas were less likely to show significant trends in NDVI. These trends reflect increasing leaf area, rather than an increase in growing season length, because Landsat data were restricted to peak‐summer conditions. The average NDVI trend (0.007 yr?1) corresponds to a leaf‐area index (LAI) increase of ~0.6 based on the regional relationship between LAI and NDVI from the Moderate Resolution Spectroradiometer. Across the entire transect, the area‐averaged LAI increase was ~0.2 during 1986–2010. A higher area‐averaged LAI change (~0.3) within the shrub‐tundra portion of the transect represents a 20–60% relative increase in LAI during the last two decades. Our Landsat‐based analysis subdivides the overall high‐latitude greening trend into changes in peak‐summer greenness by cover type. Different responses within and among shrub, graminoid, and tree‐dominated cover types in this study indicate important fine‐scale heterogeneity in vegetation growth. Although our findings are consistent with community shifts in low‐biomass vegetation types over multi‐decadal time scales, the response in tundra and forest ecosystems to recent warming was not uniform.  相似文献   

8.
In this study, multivariate spatial clustering on monthly normalized difference vegetation index (NDVI) maps is used to classify ecological regions over the western Palaearctic. This classification is then used to delineate the distribution and climate preferences of populations (clades) of the tick Ixodes ricinus L. (Acari: Ixodidae) from a geographically extensive dataset of tick records and a gridded 2.5-km resolution climate dataset. Using monthly layers of the NDVI, regions of similar ecological attributes were defined and nine populations with significant differences in critical climate parameters (P< 0.005) were detected. Grouping of tick records according to other categories, such as political divisions, a 4 degrees x 4 degrees grid overlying the study area, or the CORINE) and USGS) vegetation classification schemes did not provided significantly separated populations (P = 0.094-0.304). Factor analysis and hierarchical tree clustering provided an ecological overview of these tick clades: two Mediterranean and one Scandinavian (western) clades are clearly separated from a node that includes clades of different parts of central Europe and the British Isles, with contrasting affinities between the different clades. The capture records of these ecologically separated clades produce a clear bias when bioclimate envelope modelling is applied to the mapping of habitat suitability for the tick in the western Palaearctic. The best-performing methods (Cohen's kappa = 0.834-0.912) use partial models developed with data from each ecoregion, which are then overlapped over the region of study. It is concluded that the use of ecologically derived ecoregions is an objective step in assessing the presence of ecologically different clades, and provides a guide in the development of data partitioning for habitat suitability modelling.  相似文献   

9.
包岩  田野  柳彩霞  范文义  付晓 《生态学报》2018,38(15):5423-5433
利用1981—2010年连续30 a的GIMMS AVHRR NDVI 3g数据,应用最小二乘法线性拟合,分析了30年间呼伦贝尔市(呼盟)与锡林郭勒盟(锡盟)的地表植被覆盖绿度的变化,并在研究区内选取了24个煤矿产区,分析了矿区及其周围10、20 km和50 km的缓冲区的绿度变化趋势,通过分析矿区及对应缓冲区生长季NDVI(GNDVI)的相关性,揭示如下规律:(1)30年间,呼盟和锡盟绿度减少的区域分别为59.16%和73.13%;(2)呼盟植被绿度减少的像元散落在呼盟各个方位,增加的像元主要分布在东北部;锡盟植被绿度减少的像元分布在锡盟东部和西南部,植被绿度增加的像元分布在锡盟西北部;(3)矿区及缓冲区的GNDVI整体呈下降趋势,且锡盟的下降速度更快;(4)不管煤矿露天还是井工开采,对矿区及周边植被绿度都有影响,矿区及缓冲区GNDVI两组变量在0.05水平上显著相关;(5)GNDVI能反映植被复垦状况。  相似文献   

10.
Geostatistics (cokriging) were used to model the cross-correlated information between satellite-derived vegetation and climate variables and actual records of the tick Ixodes ricinus in the western Palearctic. The output was used to map the habitat suitability for I. ricinus on a continental scale. A database of collecting localities of I. ricinus was built up from a total of 812 records. This database has been cross-tabulated with satellite NOAA AVHRR pictures obtained from 1982 to 1994 over the Palearctic at 10 day intervals, with a resolution of 8 km per pixel. A cokriging system was generated to exploit satellite-derived data and to estimate the distribution of I. ricinus. Three vegetation (standard NDVI values) and four temperature variables output the habitat suitability prediction with a sensitivity of 0.98 and a specificity of 0.92. Results obtained with the model closely agreed with actual records of the tick, with 4 and 3% of false-positive and false-negative sites, respectively. Such statistical analysis can guide field work towards the correct interpretation of the distributional limits of ticks and may also be used to make predictions about the impact of global change on tick distributional ranges.  相似文献   

11.
川西北高原是典型的生态气候敏感区,其植被状况与气候变化密切相关。本研究基于2001—2020年MODIS-NDVI数据集和气象数据,采用最大值合成、地理探测器模型、线性趋势分析、相关分析等方法,研究川西北高原生长季归一化植被指数(NDVI)的变化趋势及其对气候因子的响应机制。结果表明: 研究期间,川西北高原植被覆盖度整体状况良好,86.8%的区域植被稳定,12.6%的区域NDVI呈弱持续性上升趋势,0.6%的区域NDVI呈下降趋势,全区生态环境呈稳中向好的发展趋势。研究区植被覆盖度空间差异大,总体呈由西南向东北上升的趋势,并有显著的立体变化。海拔1350 m以下,NDVI随海拔升高而上升;海拔1350~3650 m,NDVI无显著变化;海拔3650~5900 m,NDVI随海拔升高而下降,在4750~5900 m快速下降;海拔5900 m以上,几乎无植被。川西北高原的NDVI受多种自然因子交互作用影响,热量因子(月最高气温极大值、月最低气温极小值、植物生长期、年均温、生长期均温)是主导气候因子,除月最高气温极大值外,其余温度因子对NDVI均以正贡献为主。NDVI对气温指数的响应高于降水指数。在气候变暖背景下,极端气温暖指数对川西北高原植被生长尤其是高海拔地区植被生长及改善以促进作用为主。  相似文献   

12.
易扬  胡昕利  史明昌  康宏樟  王彬  张辰  刘春江 《生态学报》2021,41(19):7796-7807
基于1999-2015年的MODIS NDVI时间序列遥感数据,应用趋势分析、变异系数、重标极差分析和偏相关分析等方法,分析了长江中游的植被时空变化特征及其与气象因子的关系。结果表明,长江中游地区NDVI均值总体上呈上升趋势(从0.72增加到0.80)。从空间分布来看,NDVI低值区域(0.1-0.5)占1.40%,高值区域(>0.7)占87.15%;NDVI空间格局呈"西高东低、北高南低"的分布特征,低值区域表现为以三省省会城市为中心向外辐射。Hurst指数显示,研究区大部分区域(60.54%)的NDVI变化趋势具有不确定性,持续性改善区域(34.78%)主要分布在西部山地区,持续性退化区域(3.26%)主要分布在人类活动频繁的较发达城市区域。在年际尺度上,研究区NDVI与各气象因子关系均不显著;月际尺度上,NDVI与降水、相对湿度和日照时数显著相关,降水和日照时数有明显的时滞性。区域内NDVI动态趋势以不确定性发展为主,城市群周边NDVI呈现持续退化的区域应该引起关注。  相似文献   

13.
Normalized Difference Vegetation Index (NDVI) has been commonly used to estimate terrestrial vegetation distribution and productivity. In this study, we adopted recurrence quantification analysis (RQA) to investigate the spatial patterns of determinism of the vegetation dynamics ecological-geographical transition zones in North China, especially the differences between transition zone and the surrounding areas. The results indicated that there were obvious regional variances in spatial patterns of RQA indices—determinism, laminarity, entropy, and averaged diagonal line length. Remarkable differences of the determinism of NDVI time series also existed between transition zones and the surrounding areas. Moreover, the correlation analysis between the RQA indices and climatic factors suggested that the determinism of the NDVI time series was nonlinearly affected by hydrothermal conditions. Influenced by vegetation patterns, determinism reached the maximum when the annual precipitation is about 400 mm, which is the lower bound of cultivation and forest distribution, and along the 400 mm isohyet is the area where transition zones locate.  相似文献   

14.
Climatic changes may lead to drastic changes in the distribution of arthropods important in human health. We tracked changes in habitat suitability for the tick Ixodes ricinus in Europe from 1900 to 1999, using a geographically extensive gridded climate data set. For the whole period, 52% of the territory was always unsuitable for the tick. In the grid, 6.11% of the cells were classified as having a deterministic drift with positive trend and 7.4% as deterministic drift with a negative trend. A total of 17.25% of cells were classified as exhibiting a random walk behavior, with a trend to increase of habitat suitability (9.57%) or decrease (7.68%). Zones of deterministic trend extend into most of Ireland and parts of the United Kingdom and France. Total and summer rainfall primarily drive changes in habitat suitability in these sites. Areas of random walk are common in Scandinavia, central Europe, and the Balkans, with summer rainfall and temperature largely directing the changes. Sites of reported increased abundance of I. ricinus coincided with areas of increased habitat suitability over the last 20–30 years, but this feature showed a long-term random walk negative trend. Habitat suitability for I. ricinus remains relatively stable in Europe, with no sites showing permanent changes in habitat suitability (negative to sustained positive or vice versa). However, some zones in the continent showed a clear trend to increase or decrease.  相似文献   

15.
杨思遥  孟丹  李小娟  吴新玲 《生态学报》2018,38(3):1028-1039
近年降水量的减少以及全球气候变暖的影响导致我国华北区域干旱程度加剧,影响植被生长状况,使得区域生态环境恶化。基于华北地区2001-2014年的TRMM及MODIS数据,以归一化植被指数NDVI、净初级生产力NPP、植被状态指数VCI作为植被状况表征指数,以标准化降水蒸散指数SPEI作为气象干旱表征指数,对华北地区近年的气象干旱及植被状况时空变化进行评价,并分析植被对干旱的多尺度响应。结果表明:(1)华北地区干旱在西南部地区呈明显加重趋势,东北部地区干旱状况有所好转;针对不同时间尺度的SPEI表示干旱的变化趋势,得出月份尺度干旱呈现干湿交替特征,选取SPEI时间尺度越长,干旱化趋势越明显;(2)NDVI与NPP所反馈的植被长势空间分布略有差异,总体而言华北地区植被状况大部分地区呈好转趋势,但研究区中部部分地区及部分沿海地区植被状况转差;(3)植被状况指数与SPEI指数在大部分地区呈正相关,NPP与SPEI的相关性强于NDVI与SPEI的相关性,且相关程度在草原地区及中高海拔地区最高,林地对干旱的敏感度最弱;各植被类型在植被生长季的多数月份对SPEI-3响应最明显,且在夏季相关程度最高,夏季及其前期的季尺度干旱更易影响植被生长状况,SPEI-12对植被的影响主要表现为影响植被生长季初期的植被状态。  相似文献   

16.
1982-2013年基于GIMMS-NDVI的新疆植被覆盖时空变化   总被引:12,自引:0,他引:12  
刘洋  李诚志  刘志辉  邓兴耀 《生态学报》2016,36(19):6198-6208
利用美国国家航天航空局(NASA)全球检测与模型组(Global Inventor Modeling and Mapping Studies,GIMMS)的归一化植被指数数据(NDVI)和英国东英格利亚大学气候研究所(Climate Research Unit,CRU)全球气温降水数据(1982至2013年),研究新疆1982-2013年植被覆盖格局的时空变化。运用一元线性回归法分析近32年来新疆NDVI变化趋势;运用Theil-Sen median与Mann-Kendall检验研究新疆NDVI格局及趋势特征;并将检验的结果和Hurst指数的结果相结合,研究新疆NDVI格局的可持续性特征。研究表明:(1)新疆植被覆盖在空间分布上差异明显,其中北疆优于南疆,西北优于东南;(2)近32年来新疆年NDVI均值在0.10-0.12之间波动,且存阶段变化性;(3)新疆植被改善趋势的区域占总面积的25.89%,轻微退化的区域占总面积的18.00%;(4)从可持续性来看,新疆大部分地区植被变化将保持现在的趋势,但局部地区具有反持续性,持续性改善的面积占全疆总面积的24.39%,持续性轻微退化的区域占15.73%,另外59.88%为严重退化和未来变化趋势无法确定区域。开展NDVI空间格局的变化研究,对于干旱区新疆来说具有重要的理论和实际意义。  相似文献   

17.
青藏高原植被覆盖时空变化及其对气候因子的响应   总被引:12,自引:0,他引:12  
卓嘎  陈思蓉  周兵 《生态学报》2018,38(9):3208-3218
研究青藏高原植被覆盖时空分布特征对加深气候变化的认识及生态环境保护具有重要的生态价值和现实意义。利用2000—2016年MODIS NDVI 1km/月分辨率数据以及气象观测数据,采用最大合成法、趋势性分析以及相关分析方法,探讨了不同时间尺度青藏高原地区NDVI的分布特征及其与降水、气温的关系。结果表明:(1)青藏高原东南部植被状况明显好于西北部,植被覆盖的分布格局与区域水热条件的时空分布保持了较好的一致性;近17年来青藏高原植被覆盖改善的地区要比退化的地区面积大,严重退化的区域主要位于青藏高原西南部;青藏高原NDVI值在2000—2016年呈幅度较小的增加趋势。(2)除夏季降水量外,研究时段内其他季节降水量均呈增加趋势;气温均呈增加趋势,尤其以春季增加最为显著,整体上青藏高原气候呈现"暖湿化"趋势。总体上年降水量与年最大合成NDVI呈较好的正相关;年平均气温与年最大合成NDVI在高原东南部呈正相关,西南部呈负相关。降水量和热量条件均是高原植被生长的影响因素,降水与植被覆盖的影响较气温密切。  相似文献   

18.
作为陆地生态系统的主体,植被的时空变化深刻地影响着景观格局和生态功能,深入理解植被动态及其对气候变化的响应,对于提高对生态过程的认识、加强生态管理具有重要意义。在一致性检验的基础上,利用中分辨率成像光谱仪(moderateresolution imaging Spectroradiometer,MODIS)的归一化植被指数(normalized Difference Vegetation Index,NDVI)数据集将新疆地区全球检测与模型研究组(Global Inventory Modeling and Mapping Studies,GIMMS)开发的NDVI数据集的时间序列拓展到2012年,探讨了生长季和各季节植被绿度、气候异常值的动态变化,分析了植被对气候变化的响应。研究结果显示,区域尺度和像元尺度GIMMS与MODIS NDVI之间的一致性较强。1982—2012年,研究区域生长季和各季节植被绿度呈显著增加趋势,但生长季存在明显阶段性:1998年前后分别呈显著增加和显著减少,夏季与秋季与生长季类似,而春季则不存在变化趋势的逆转。NDVI呈正异常值的面积比例与区域尺度NDVI的变化趋势一致;极端异常值、较大异常值多呈明显减少趋势,而一般异常值多呈增加趋势,NDVI的变化倾向于逐渐平稳。区域变暖趋势显著,降水量略有增加,潜在蒸散发显著提高,而湿润指数变化不明显。气温、潜在蒸散发主要在春季、秋季促进植被生长,而夏季降水量、湿润指数对植被生长的调节作用更为突出。  相似文献   

19.
The spatial distribution of American visceral leishmaniasis (VL) was studied within the context of the environmental characteristics of northwest Bahia State in Brazil during an epidemic year. Geographic Information Systems (GIS) and Remote Sensing (RS) were used to characterize the landscape epidemiology of VL in order to identify and map high risk areas and endemic zones in a northwestern Bahia study area. Normalized Difference Vegetation Index (NDVI) was shown to be one of the most important risk factors in the area of study. Low NDVI values were related to high numbers of sand flies and high numbers of human and canine VL positive cases. Caatinga vegetation type was the dominant vegetation type in the endemic area. The use of RS and GIS allowed the identification of classes of VL risk that may be useful information to guide control program interventions.  相似文献   

20.
吴欣宇  朱秀芳 《生态学报》2023,43(24):10202-10215
分析不同区域植被对极端气候的响应对于加深对植被与气候之间关系的理解以及制定应对极端气候条件的措施尤为重要。基于2001—2020年气候数据和归一化植被指数(NDVI)数据,以植被区划为分析单元,分析中国8个植被区的NDVI和27个极端气候指数的时空变化趋势,探究各植被区植被NDVI对极端气候的响应特征与差异性。结果表明:(1)整个研究区及各植被区的平均NDVI年最大值呈显著增加趋势,其中,温带针叶、落叶阔叶混交林区增加趋势最明显,青藏高原高寒植被区增加趋势最弱。(2)极端高温指数多呈升高趋势。极端降水指数在研究区东部呈升高趋势,在西南部呈减少趋势。(3)在不同植被区对NDVI影响最大的极端气候指数不同,其中在寒温带针叶林区影响最大的指数为温暖时间持续指数(WSDI);在温带针叶、落叶阔叶混交林区和热带季风雨林、雨林区影响最大的指数为最高低温(TNx);在暖温带落叶阔叶林区和亚热带常绿阔叶林区为简单降水强度指数(SDII);在温带草原区为最高高温(TXx);在温带荒漠区为年总降水量(PRCPTOT);在青藏高原高寒植被区为结冰天数(ID)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号