首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glyoxal bis(guanylhydrazone), the parent compound of methylglyoxal bis(guanylhydrazone), was synthesized and tested for its ability to inhibit the biosynthesis of polyamines. It was found to be a powerful competitive inhibitor of adenosylmethionine decarboxylase (EC 4.1.1.50), yet the lack of the methyl group at the glyoxal portion increased the apparent Ki value for the enzyme by about 30-fold in comparison with methylglyoxal bis(guanylhydrazone). Glyoxal bis(guanylhydrazone) inhibited diamine oxidase (EC 1.4.3.6) activity as effectively as did methylglyoxal bis(guanylhydrazone). The cellular accumulation curves of glyoxal bis(guanylhydrazone) in L1210 cells were practically superimposable with those of methylglyoxal bis(guanylhydrazone), and the uptake of both compounds was distinctly stimulated by a prior treatment with 2-difluoromethylornithine. The drug decreased the concentration of spermidine in a dose-dependent manner and, in contrast with methylglyoxal bis(guanylhydrazone), without a concomitant accumulation of putrescine. The fact that putrescine concentrations were decreased in cells exposed to glyoxal bis(guanylhydrazone) was, at least in part, attributable to an inhibition of ornithine decarboxylase (EC 4.1.1.17) activity in cells treated with the compound. Under these experimental conditions equivalent concentrations of methylglyoxal bis(guanylhydrazone) [1,1'-[(methylethanediylidine)dinitrilo]diguanidine] elicited large increases in the enzyme activity. When combined with difluoromethylornithine, glyoxal bis(guanylhydrazone) potentiated the growth-inhibitory effect of that drug. Taking into consideration the proven anti-leukaemic activity of glyoxal bis(guanylhydrazone), its effectiveness to inhibit spermidine biosynthesis (without raising the concentration of putrescine) as well as its suitability for combined use with inhibitors of ornithine decarboxylase, this drug is apparently worthy of further testing in tumour-bearing animals, especially in combination with difluoromethylornithine or related inhibitors of ornithine decarboxylase.  相似文献   

2.
1. The activation of human peripheral blood lymphocytes by phytohaemagglutinin in vitro was accompanied by striking increases in the concentrations of the natural polyamines putrescine, spermidine and spermine. 2. The enhanced accumulation of polyamines could be almost totally abolished by dl-alpha-difluoromethylornithine, a newly discovered irreversible inhibitor of l-ornithine decarboxylase (EC 4.1.1.17), or by methylglyoxal bis(guanylhydrazone) {1,1'-[(methylethanediylidene)dinitrilo]diguanidine}, an inhibitor of S-adenosyl-l-methionine decarboxylase (EC 4.1.1.50). The inhibition of polyamine accumulation was associated with a marked suppression of DNA synthesis, which was partially or totally reversed by low concentrations of exogenous putrescine, spermidine, spermine and cadaverine and by higher concentrations of 1,3-diaminopropane. 3. In contrast with some earlier studies, we found that methylglyoxal bis(guanylhydrazone), at concentrations that were sufficient to prevent polyamine accumulation, also caused a clear inhibition of protein synthesis in the activated lymphocytes. Similar results were obtained with difluoromethylornithine. The decrease in protein synthesis caused by both compounds preceded the impairment of DNA synthesis. The inhibition of protein synthesis by difluoromethylornithine was fully reversed by exogenous putrescine, spermidine and spermine, and that caused by methylglyoxal bis(guanylhydrazone) by spermidine and spermine. In further support of the idea that the inhibition of protein synthesis by these compounds was related to the polyamine depletion, we found that difluoromethylornithine caused a dose-dependent decrease in the incorporation of [(14)C]leucine into lymphocyte proteins which closely correlated with the decreased concentrations of cellular spermidine. 4. Difluoromethylornithine and methylglyoxal bis(guanylhydrazone) also elicited a variable depression in the incorporation of [(3)H]uridine and [(14)C]adenine into total RNA. The apparent turnover of lymphocyte RNA remained essentially unchanged in spite of severe polyamine depletion brought about by difluoromethylornithine. 5. The present results, as well as confirming the anti-proliferative action of the inhibitors of polyamine biosynthesis, suggest that polyamine depletion may interfere with reactions at different levels of gene expression.  相似文献   

3.
Inhibition of polyamine synthesis by alpha-difluoromethylornithine in cultured Ehrlich ascites-carcinoma cells rapidly enhanced the uptake of exogenous putrescine, spermidine and spermine from the culture medium. In tumour cells exposed to the drug for 2 days, the intracellular concentration of spermidine was decreased to less than 10% of that found in untreated cells. However, the strikingly stimulated transport system brought the concentration of spermidine to the control values in less than 2h after supplementation of the cells with micromolar concentrations of the polyamine. In the absence of polyamine deprivation, tumour cells did not accumulate extracellular polyamines to any appreciable extent. Ascites-tumour cells deprived of putrescine and spermidine likewise concentrated methylglyoxal bis(guanylhydrazone) [1,1'-[methylethanedylidine)dinitrilo]diguanidine] at a greatly enhanced rate. A previous "priming of tumour cells with difluoromethylornithine followed by an exposure of the cells to methylglyoxal bis(guanylhydrazone) resulted in a marked and rapid anti-proliferative effect.  相似文献   

4.
S-adenosylmethionine decarboxylase from baker''s yeast.   总被引:7,自引:2,他引:5       下载免费PDF全文
1. S-Adenosyl-L-methionine decarboxylase (S-adenosyl-L-methionine carboxy-lyase, EC 4.1.1.50) was purified more than 1100-fold from extracts of Saccharomyces cerevisiae by affinity chromatography on columns of Sepharose containing covalently bound methylglyoxal bis(guanylhydrazone) (1,1'[(methylethanediylidene)dinitrilo]diguanidine) [Pegg, (1974) Biochem J. 141, 581-583]. The final preparation appeared to be homogeneous on polyacrylamide-gel electrophoresis at pH 8.4. 2. S-Adenosylmethionine decarboxylase activity was completely separated from spermidine synthase activity [5'-deoxyadenosyl-(5'),3-aminopropyl-(1),methylsulphonium-salt-putrescine 3-aminopropyltransferase, EC 2.5.1.16] during the purification procedure. 3. Adenosylmethionine decarboxylase activity from crude extracts of baker's yeast was stimulated by putrescine, 1,3-diamino-propane, cadaverine (1,5-diaminopentane) and spermidine; however, the purified enzyme, although still stimulated by the diamines, was completely insensitive to spermidine. 4. Adenosylmethionine decarboxylase has an apparent Km value of 0.09 mM for adenosylmethionine in the presence of saturating concentrations of putrescine. The omission of putrescine resulted in a five-fold increase in the apparent Km value for adenosylmethionine. 5. The apparent Ka value for putrescine, as the activator of the reaction, was 0.012 mM. 6. Methylglyoxal bis(guanylhydrazone) and S-methyladenosylhomocysteamine (decarboxylated adenosylmethionine) were powerful inhibitors of the enzyme. 7. Adenosylmethionine decarboxylase from baker's yeast was inhibited by a number of conventional carbonyl reagents, but in no case could the inhibition be reversed with exogenous pyridoxal 5'-phosphate.  相似文献   

5.
Methylglyoxal bis(guanylhydrazone) {1,1'-[(methylethanediylidene)-dinitrilo]diguanidine} is a very potent inhibitor of putrescine-activated S-adenosylmethionine decarboxylases from many different mammalian tissues, including sublines of mouse L1210 leukaemia that are resistant to the drug as well as sublines that are sensitive. The inhibition of purified rat ventral prostate S-adenosylmethionine decarboxylase is competitive with respect to the S-adenosylmethionine substrate, and is much greater in the presence than in the absence of the activator putrescine. Inhibition by the drug depends, among other things, on the nature of the aliphatic amines that can serve as stimulators of rat prostate S-adenosylmethionine decarboxylase. Effects of some congeners of methylglyoxal bis(guanylhydrazone) on the enzyme are described.  相似文献   

6.
Spermidine and spermine stimulate the activity of T4-DNA ligase   总被引:2,自引:0,他引:2  
When the ability of T4-DNA ligase from E. coli NM 989 to form higher molecular weight polymers from linearized plasmid pJDB 207 was followed, it was observed that physiological concentrations (0.5 to 1.0 mM) of spermidine and spermine greatly stimulated the formation of these polymers. The effect had a strict specificity since 1,3-diaminopropane, putrescine (1,4-diaminobutane) and N1-acetylspermidine neither stimulated nor inhibited this activity of DNA ligase. The structural analogues of spermidine, methyl bis(guanylhydrazone) and 1,1'-[(methylethanediylidene)dinitrilo]bis(3-aminoguanidine) totally abolished the stimulatory effect of spermidine on T4-DNA ligase without affecting the enzyme's basal activity.  相似文献   

7.
Treatment of mice bearing L1210 leukaemia with 2-difluoromethylornithine, a specific inhibitor of ornithine decarboxylase (EC 4.1.1.17), produced a profound depletion of putrescine and spermidine in the tumour cells. Sequential combination of methylglyoxal bis(guanylhydrazone), an inhibitor of adenosylmethionine decarboxylase (EC 4.1.1.50), with difluoromethylornithine largely reversed the polyamine depletion and led to a marked accumulation of cadaverine in the tumour cells. Experiments carried out with the combination of difluoromethylornithine and aminoguanidine, a potent inhibitor of diamine oxidase (EC 1.4.3.6), indicated that the methylglyoxal bis(guanylhydrazone)-induced reversal of polyamine depletion was mediated by the known inhibition of diamine oxidase by the diguanidine. In spite of the normalization of the tumour cell polyamine pattern upon administration of methylglyoxal bis(guanylhydrazone) to difluoromethylornithine-treated animals, the combination of these two drugs produced a growth-inhibitory effect not achievable with either of the compounds alone.  相似文献   

8.
Exposure of rat L6 cells in culture to exogenous polyamines led to a very large increase in the activity of spermidine/spermine N1-acetyltransferase. Spermine was more potent than spermidine in bringing about this increase, but in both cases the elevated acetyltransferase activity increased the cellular conversion of spermidine into putrescine. The N1-acetyltransferase turned over very rapidly in the L6 cells, with a half-life of 9 min after spermidine and 18 min after spermine. A wide variety of synthetic polyamine analogues also brought about a substantial induction of spermidine/spermine N1-acetyltransferase activity. These included sym-norspermidine, sym-norspermine, sym-homospermidine, N4-substituted spermidine derivatives, 1,3,6-triaminohexane, 1,4,7-triaminoheptane and deoxyspergualin, which were comparable with spermidine in their potency, and N1N8-bis(ethyl)spermidine, N1N9-bis(ethyl)homospermidine, methylglyoxal bis(guanylhydrazone), ethylglyoxal bis(guanylhydrazone) and 1,1'-[(methylethanediylidene)dinitrilo]bis(3-amino-guanidine ), which were even more active than spermidine. It is suggested that these polyamine analogues may bring about a decrease in cellular polyamines not only by inhibiting biosynthesis but by stimulating the degradation of spermidine into putrescine.  相似文献   

9.
1. A number of compounds known to inhibit polyamine biosynthesis at various steps in the biosynthetic pathway were tested for their ability to inhibit growth and decrease polyamine concentrations in virally transformed mouse fibroblasts (SV-3T3 cells). 2. Virtually complete inhibition of growth was produced by the inhibitors of ornithine decarboxylase α-methylornithine and α-difluoromethylornithine and by the inhibitors of S-adenosylmethionine decarboxylase 1,1′-[(methylethanediylidene)dinitrilo]diguanidine and 1,1′-[(methylethanediylidene)dinitrilo]bis-(3-aminoguanidine). The former inhibitors decreased putrescine and spermidine contents in the cells to very low values, whereas the latter substantially increased putrescine but decreased spermidine concentrations. The inhibitory effects of all of these inhibitors on cell growth could be prevented by the addition of spermidine, suggesting that spermidine depletion is the underlying cause of their inhibition of growth. 3. α-Difluoromethylornithine, which is an irreversible inhibitor of ornithine decarboxylase, was a more potent inhibitor of growth and polyamine production (depleting spermidine almost completely and spermine significantly) than α-methylornithine, which is a competitive inhibitor. This was not the case with the inhibitors of S-adenosylmethionine decarboxylase where 1,1′-[(methylethanediylidene)dinitrilo]diguanidine, a reversible inhibitor, was more active than 1,1′-[(methylethanediylidene)dinitrilo]bis-(3-aminoguanidine), an irreversible inhibitor. It is suggested that this effect may be due to the lesser uptake and/or greater chemical reactivity of the latter compound. 4. Various nucleoside derivatives of S-adenosylhomocysteine that inhibited spermidine synthase in vitro did not have significant inhibitory action against polyamine accumulation in the cell. These compounds, which included S-adenosylhomocysteine sulphone, decarboxylated S-adenosylhomocysteine sulphone, decarboxylated S-adenosylhomocysteine sulphoxide and S-adenosyl-4-thio-butyric acid sulphone did not inhibit cell growth or polyamine content until cytotoxic concentrations were added. 5. 5′-Methylthioadenosine, 5′-isobutylthioadenosine and 5′-methylthiotubercidin, which inhibit aminopropyltransferase activity in vitro, all inhibited cell growth and decreased spermidine content. Although these compounds were most active against spermine synthase in vitro, they acted in the cell primarily to decrease spermidine content. Cell growth could not be restored to normal values by addition of spermidine, suggesting that these nucleosides have another inhibitory action towards cellular proliferation. 6. 5′-Methylthioadenosine and 5′-isobutylthioadenosine are degraded by a phosphorylase present in SV3T3 cells, yielding 5-methylthioribose-1-phosphate and 5-isobutylthioribose-1-phosphate respectively, and adenine. This degradation appears to decrease the inhibitory action towards cell growth, suggesting that the nucleosides themselves are exerting the inhibitory action. 5′-Methylthiotubercidin, which is not a substrate for the phosphorylase and is a competitive inhibitor of it, was the most active of these nucleosides in inhibiting cell growth and spermidine content. 5′-Methylthiotubercidin and α-difluoromethylornithine had additive effects on retarding cell growth, but not on cellular spermine accumulation, also suggesting that the primary growth-inhibiting action of the nucleoside was not on polyamine production. 7. These results support the concept that 5′-methylthioadenosine phosphorylase plays an important role in permitting cell growth to continue by preventing the build-up of inhibitory intracellular concentrations of 5′-methylthioadenosine.  相似文献   

10.
S-Adenosylmethionine metabolism and its relation to the synthesis and accumulation of polyamines was studied in rat liver under various nutritional conditions, in adrenalectomized or partially hepatectomized animals and after treatment with cortisol, thioacetamide or methylglyoxal bis(guanylhydrazone) {1,1'-[(methylethanediylidine)dinitrilo]diguanidine}. Starvation for 2 days only slightly affected S-adenosylmethionine metabolism. The ratio of spermidine/spermine decreased markedly, but the concentration of total polyamines did not change significantly. The activity of S-adenosylmethionine decarboxylase initially decreased and then increased during prolonged starvation. This increase was dependent on intact adrenals. Re-feeding of starved animals caused a rapid but transient stimulation of polyamine synthesis and also increased the concentrations of S-adenosylmethionine and S-adenosylhomocysteine. Similarly, cortisol treatment enhanced the synthesis of polyamines, S-adenosylmethionine and S-adenosylhomocysteine. Feeding with a methionine-deficient diet for 7-14 days profoundly increased the concentration of spermidine, whereas the concentrations of total polyamines and of S-adenosylmethionine showed no significant changes. The results show that nutritional state and adrenal function play a significant role in the regulation of hepatic metabolism of S-adenosylmethionine and polyamines. They further indicate that under a variety of physiological and experimental conditions the concentrations of S-adenosylmethionine and of total polyamines remain fairly constant and that changes in polyamine metabolism are not primarily connected with changes in the accumulation of S-adenosylmethionine or S-adenosylhomocysteine.  相似文献   

11.
1. Polyamine concentrations were decreased in rats fed on a diet deficient in vitamin B-6. 2. Ornithine decarboxylase activity was decreased by vitamin B-6 deficiency when assayed in tissue extracts without addition of pyridoxal phosphate, but was greater than in control extracts when pyridoxal phosphate was present in saturating amounts. 3. In contrast, the activity of S-adenosylmethionine decarboxylase was not enhanced by pyridoxal phosphate addition even when dialysed extracts were prepared from tissues of young rats suckled by mothers fed on the vitamin B-6-deficient diet. 4. S-Adenosylmethionine decarboxylase activities were increased by administration of methylglyoxal bis(guanylhydrazone) (1,1'-[(methylethanediylidine)dinitrilo]diguanidine) to similar extents in both control and vitamin B-6-deficient animals. 5. The spectrum of highly purified liver S-adenosylmethionine decarboxylase did not indicate the presence of pyridoxal phosphate. After inactivation of the enzyme by reaction with NaB3H4, radioactivity was incorporated into the enzyme, but was not present as a reduced derivative of pyridoxal phosphate. 6. It is concluded that the decreased concentrations of polyamines in rats fed on a diet containing vitamin B-6 may be due to decreased activity or ornithine decarboxylase or may be caused by an unknown mechanism responding to growth retardation produced by the vitamin deficiency. In either case, measurements of S-adenosylmethionine decarboxylase and ornithine decarboxylase activity under optimum conditions in vitro do not correlate with the polyamine concentrations in vivo.  相似文献   

12.
1. The interaction of polyamines and methylglyoxal bis(guanythydrazone) (1, 1'-[(methylethanediylidene)-dinitrilo]diguanidine) with isolated rat liver nuclei was investigated by electron microscopy. 2. At 4mM, putrescine was without effect; however, spermidine, spermine or methylglyoxal bis(guanythydrazone) resulted in dispersed chromatin and alterations in nucleolar structure. In addition, spermidine or methylglyoxal bis(guanylhydrazone) caused marked aggregation of interchromatin granules. 3. The DNA template property of calf thymus DNA was examined by using DNA polymerases from Escherichia coli, Micrococcus lysodeikticus and calf thymus in the presence of 0-5 mM-amine. 4. In the presence of DNA polymerase, spermine or methylglyoxal bis(guanylhydrazone) inhibited activity, whereas putrescine or spermidine had much less effect or in some cases stimulated [3H]dTMP incorporation. 5. Template activity which was inhibited by spermine or methylglyoxal bis(guanylhydrazone) could be partially restored by additional DNA or enzyme. 6. When mixed with calf thymus DNA, calf thymus histone inhibited template activity as measured with E. coli DNA polymerase. The template activity of such a 'histone-nucleate' could not be restored by putrescine, spermidine, spermine or methylglyoxal bis(guanylhydrazone). 7. DNA template activity of isolated rat liver nuclei was tested by using E. coli DNA polymerase. None of the amines was able to increase the template activity of the nuclear DNA in vitro.  相似文献   

13.
2-Difluoromethylornithine totally prevented any increases in putrescine and spermidine concentrations in the ventral prostate of castrated rats during a 6-day testosterone treatment. Prostatic ornithine decarboxylase activity was inhibited by 80%, whereas S-adenosylmethionine decarboxylase was stimulated by more than 9-fold. In seminal vesicle, the inhibition of putrescine and spermidine accumulation, as well as of ornithine decarboxylase activity, was only minimal, and no stimulation of S-adenosylmethionine decarboxylase was observed. Administration of methylglyoxal bis(guanylhydrazone) to castrated androgen-treated rats resulted in a marked increase in concentrations of all prostatic polyamines. Prostatic ornithine decarboxylase activity was nearly 2 times and adenosylmethionine decarboxylase activity 9 times higher than that of the testosterone-treated animals. In contrast with ventral prostate, methylglyoxal bis(guanylhydrazone) treatment inhibited moderately the accumulation of spermidine and spermine in seminal vesicle, although both ornithine decarboxylase and S-adenosylmethionine decarboxylase activities were stimulated. Difluoromethylornithine inhibited significantly the weight gain of ventral prostate, but methylglyoxal bis(guanylhydrazone) produced a substantial increase in prostatic weight. These changes were largely due to the fact that the volume of prostatic secretion was greatly decreased by difluoromethylornithine, whereas methylglyoxal bis(guanylhydrazone) increased the amount of secretion. Treatment with difluoromethylornithine strikingly increased the methylglyoxal bis(guanylhydrazone) content of both ventral prostate and seminal vesicle, but even under these conditions the drug concentration remained low in comparison with other tissues. The results indicate that a combined use of these two polyamine anti-metabolites does not necessarily result in a synergistic growth inhibition of the androgen-induced growth of male accessory sexual glands.  相似文献   

14.
Several congeners of methylglyoxal bis(guanylhydrazone) were tested for their ability to inhibit eukaryotic putrescine-activated S-adenosylmethionine decarboxylase (EC 4.1.1.50) and intestinal diamine oxidase (EC 1.4.3.6). All the compounds tested, namely methylglyoxal bis(guanylhydrazone), ethylglyoxal bis(guanylhydrazone), dimethylglyoxal bis(guanylhydrazone) and the di-N"-methyl derivative of methylglyoxal bis(guanylhydrazone), were strong inhibitors of both yeast and mouse liver adenosylmethionine decarboxylase activity in vitro. The enzyme from both sources was most powerfully inhibited by ethylglyoxal bis(guanylhydrazone). All the diguanidines likewise inhibited diamine oxidase activity in vitro. The maximum intracellular concentrations of the ethyl and dimethylated analogues achieved in activated lymphocytes were only about one-fifth of that of the parent compound. However, both derivatives appeared to utilize the polyamine-carrier system, as indicated by competition experiments with spermidine.  相似文献   

15.
Ethylglyoxal bis(guanylhydrazone), a close derivative of the known anti-cancer drug methylglyoxal bis(guanylhydrazone), is also a powerful inhibitor of S-adenosylmethionine decarboxylase (EC 4.1.1.50), the enzyme needed for the synthesis of spermidine and spermine. There were, however, marked differences between the ethyl and methyl derivatives of glyoxal bis(guanylhydrazone) when tested in cultured L1210 cells. The cellular accumulation of ethylglyoxal bis(guanylhydrazone) represented only a fraction (20-25%) of that of the methyl derivative. Moreover, polyamine depletion, which is known to strikingly stimulate the uptake of methylglyoxal bis(guanylhydrazone), decreased, if anything, the uptake of ethylglyoxal bis(guanylhydrazone) by L1210 cells. The compound produced spermidine and spermine depletion fully comparable to that achieved with methylglyoxal bis(guanylhydrazone) at micromolar concentrations. Ethylglyoxal bis(guanylhydrazone) was growth-inhibitory to L1210 cells and produced an additive antiproliferative action when used together with 2-difluoromethylornithine. Ethylglyoxal bis(guanylhydrazone) was distinctly less effective than methylglyoxal bis(guanylhydrazone) in releasing bound polyamines from isolated cell organelles in vitro. Ethylglyoxal bis(guanylhydrazone) was also devoid of the early and profound mitochondrial toxicity typical to methylglyoxal bis(guanylhydrazone). These findings may indicate that this compound is a more specific inhibitor of polyamine biosynthesis with less intracellular polyamine 'receptor-site' activity than methylglyoxal bis(guanylhydrazone).  相似文献   

16.
Ehrlich ascites carcinoma cells were cultured in the presence of difluoromethyl ornithine (DFMO) and micromolar concentrations of cadaverine for several months. This treatment resulted in a complete disappearance of putrescine and spermidine and reduced spermine content to traces of its normal content. The natural polyamines were replaced by cadaverine (about 40% of total polyamines), N-(3-aminopropyl)cadaverine (about 50%) and N,N′-bis(3-aminopropyl)cadaverine (about 5%). In comparison with untreated cells or cells grown in the presence of DFMO and putrescine, the “cadaverine cells” grew definitely slower, their protein synthesis was depressed while DNA and RNA syntheses proceeded at near normal rate. In spite of the high intracellular concentrations of cadaverine and its aminopropyl derivatives, the tumor cells grown in the presence of DFMO and cadaverine, behaved exactly like cells severly depleted of putrescine and spermidine. Though exposed to DFMO, ornithine decarboxylase activity was almost 10 times higher than that in untreated cells. S-Adenosyl-L-methionine decarboxylase activity was likewise strikingly elevated, and these cells transported methylglyoxal strikingly elevated, and these cells transported methylglyoxal bis(guanylhydrazone) (MGBG) at a rate that was more than 5 times faster than that in untreated cells. Furthermore, these cells exhibited arginase activity, which was less than one fifth of that found in untreated cells.  相似文献   

17.
多胺与激动素对稀脉浮萍离体叶状体衰老的影响   总被引:12,自引:0,他引:12  
多胺与KT 都可抑制暗诱导衰老的稀脉浮萍(Lem na aequinoctialis)离体叶状体的叶绿素损失,且多胺的作用大于KT。KT 还显著抑制蛋白质的损失与蛋白酶活性的上升,而多胺对此却无大的影响。0.05 m m ol/L的甲基乙二醛二脒基-腙(MGBG)轻微促进叶绿素和蛋白质的损失。0.05 m m ol/L的KT 可抑制衰老过程中腐胺(Put)的上升和亚精胺(Spd)的下降,而对精胺(Spm )无明显影响。在稀脉浮萍中,精氨酸脱羧酶(ADC)活性占优势。KT 可轻微促进ADC 活性,而对鸟氨酸脱羧酶(ODC)和S-腺苷甲硫氨酸脱羧酶(SAMDC)活性无显著影响。讨论了多胺与细胞分裂素在抑制植物叶片衰老过程中作用途径的可能关系  相似文献   

18.
19.
20.
Three bis(guanylhydrazones) (those of methylglyoxal, glyoxal and ethylglyoxal) were compared for their affinity for the putative polyamine carrier and for their cellular retention in L1210 mouse leukaemia cells. All the bis(guanylhydrazones) inhibited equally effectively the uptake of spermidine by the tumour cells, indicating that the compounds had roughly equal affinity for the polyamine carrier. The fact that methylglyoxal bis(guanylhydrazone) and glyoxal bis(guanylhydrazone) were much more effectively concentrated in the animal cells than was ethylglyoxal bis(guanylhydrazone) was obviously attributable to the finding that the efflux rate of ethylglyoxal bis(guanylhydrazone) greatly exceeded that of the other bis(guanylhydrazones). The rate of efflux of the drugs was slowed down if the tumour cells were treated with 2-difluoromethylornithine before exposure to the bis(guanylhydrazones). These results suggest that intracellular binding of the bis(guanylhydrazones) determines their cellular accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号