首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In neurons enzymatically isolated from adult rat dorsal root ganglia and used during the following 24 hours, the Ca2+ currents were investigated with the whole-cell patch-clamp technique. In contrast to the neonatal neurons, the salient feature of these adult neurons is the well separated (in the voltage-range) activation and inactivation properties of each recorded current. The low-threshold T-, the high-threshold inactivating N-, and the long-lasting L-currents have a threshold for activation at -60, -45 and -10 mV, and a 50% inactivation at -75, -45 and -5 mV respectively. The N and L currents were poorly affected by 100 microM Ni, a known blocker of T channels and completely blocked by 100 microM Cd2+. Frequently we could find neurons with only one type of current present. We conclude that adult sensory neurons are a better preparation for studying, in isolation, the physiological relevance of the three types of Ca2+ channels.  相似文献   

2.
Currents carried by L-, N-, and P/Q-type calcium channels do not account for the total calcium current in myenteric neurons. This study identified all calcium channels expressed by guinea pig small intestinal myenteric neurons maintained in primary culture. Calcium currents were recorded using whole cell techniques. Depolarizations (holding potential = -70 mV) elicited inward currents that were blocked by CdCl(2) (100 microM). Combined application of nifedipine (blocks L-type channels), Omega-conotoxin GVIA (blocks N-type channels), and Omega-agatoxin IVA (blocks P/Q-type channels) inhibited calcium currents by 56%. Subsequent addition of the R-type calcium channel antagonists, NiCl(2) (50 microM) or SNX-482 (0.1 microM), abolished the residual calcium current. NiCl(2) or SNX-482 alone inhibited calcium currents by 46%. The activation threshold for R-type calcium currents was -30 mV, the half-activation voltage was -5.2 +/- 5 mV, and the voltage sensitivity was 17 +/- 3 mV. R-type currents activated fully in 10 ms at 10 mV. R-type calcium currents inactivated in 1 s at 10 mV, and they inactivated (voltage sensitivity of 16 +/- 1 mV) with a half-inactivation voltage of -76 +/- 5 mV. These studies have accounted for all of the calcium channels in myenteric neurons. The data indicate that R-type calcium channels make the largest contribution to the total calcium current in myenteric neurons. The relatively positive half-activation voltage and rapid activation kinetics suggest that R-type channels could contribute to calcium entry during somal action potentials or during action potential-induced neurotransmitter release.  相似文献   

3.
白细胞介素1β(Interleukin-1β,IL-1β)是一种重要的促炎细胞因子,在中枢神经系统中发挥着广泛的生物学功能。大量研究表明,IL-1β的作用非常复杂,在不同的模型和条件下作用不同,包括神经损伤或者神经毒性作用。电压门控钾通道调节神经元电学性质,也参与多种中枢神经系统的病理学过程。虽然IL-1β和钾通道都在脑损伤和脑疾病过程中发挥重要作用,但目前还很少有它们之间关系的研究报导。文章作者以原代培养的大鼠皮层神经元为材料,使用全细胞膜片钳技术,研究了10 ng/mL的IL-1β在不同处理时间下对皮层神经元电压依赖性钾电流的影响。根据电流的性质,可以将记录到的钾电流分为瞬时外向电流(IA)为主的IA样电流和延迟整流电流(IK)为主的IK样电流两部分,结果显示:IL-1β处理8 h对二者没有作用;处理24 h可使IA样和IK样电流的幅度降低20%左右。以上结果提示IL-1β对大鼠皮层神经元电压门控钾电流具有抑制作用,并且这种抑制可能具有时间依赖性。  相似文献   

4.
The electrical properties of olfactory receptor neurons, enzymatically dissociated from the channel catfish (Ictalurus punctatus), were studied using the whole-cell patch-clamp technique. Six voltage-dependent ionic currents were isolated. Transient inward currents (0.1-1.7 nA) were observed in response to depolarizing voltage steps from a holding potential of -80 mV in all neurons examined. They activated between -70 and -50 mV and were blocked by addition of 1 microM tetrodotoxin (TTX) to the bath or by replacing Na+ in the bath with N-methyl-D-glucamine and were classified as Na+ currents. Sustained inward currents, observed in most neurons examined when Na+ inward currents were blocked with TTX and outward currents were blocked by replacing K+ in the pipette solution with Cs+ and by addition of 10 mM Ba2+ to the bath, activated between -40 and -30 mV, reached a peak at 0 mV, and were blocked by 5 microM nimodipine. These currents were classified as L-type Ca2+ currents. Large, slowly activating outward currents that were blocked by simultaneous replacement of K+ in the pipette with Cs+ and addition of Ba2+ to the bath were observed in all olfactory neurons examined. The outward K+ currents activated over approximately the same range as the Na+ currents (-60 to -50 mV), but the Na+ currents were larger at the normal resting potential of the neurons (-45 +/- 11 mV, mean +/- SD, n = 52). Four different types of K+ currents could be differentiated: a Ca(2+)-activated K+ current, a transient K+ current, a delayed rectifier K+ current, and an inward rectifier K+ current. Spontaneous action potentials of varying amplitude were sometimes observed in the cell-attached recording configuration. Action potentials were not observed in whole-cell recordings with normal internal solution (K+ = 100 mM) in the pipette, but frequently appeared when K+ was reduced to 85 mM. These observations suggest that the membrane potential and action potential amplitude of catfish olfactory neurons are significantly affected by the activity of single channels due to the high input resistance (6.6 +/- 5.2 G omega, n = 20) and low membrane capacitance (2.1 +/- 1.1 pF, n = 46) of the cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Insect olfactory receptor neurons (ORNs) grown in primary cultures were studied using the patch-clamp technique in both conventional and amphotericin B perforated whole-cell configurations under voltage-clamp conditions. After 10-24 days in vitro, ORNs had a mean resting potential of -62 mV and an average input resistance of 3.2 GOmega. Five different voltage-dependent ionic currents were isolated: one Na(+), one Ca(2+) and three K(+) currents. The Na(+) current (35-300 pA) activated between -50 and -30 mV and was sensitive to 1 microM tetrodotoxin (TTX). The sustained Ca(2+) current activated between -30 and -20 mV, reached a maximum amplitude at 0 mV (-4.5 +/- 6.0 pA) that increased when Ba(2+) was added to the bath and was blocked by 1 mM Co(2+). Total outward currents were composed of three K(+) currents: a Ca(2+)-activated K(+) current activated between -40 and -30 mV and reached a maximum amplitude at +40 mV (605 +/- 351 pA); a delayed-rectifier K(+) current activated between -30 and -10 mV, had a mean amplitude of 111 +/- 67 pA at +60 mV and was inhibited by 20 mM tetraethylammonium (TEA); and, finally, more than half of ORNs exhibited an A-like current strongly dependent on the holding potential and inhibited by 5 mM 4-aminopyridine (4-AP). Pheromone stimulation evoked inward current as measured by single channel recordings.  相似文献   

6.
It is generally accepted that inositol-1,4,5-trisphosphate (InsP3) plays a role in olfactory transduction. However, the precise mode of action of InsP3 remains controversial. We have characterized the conductances activated by the addition of 10 microM InsP3 to excised patches of soma plasma membrane from rat olfactory neurons. InsP3 induced current fluctuations in 25 of 121 inside-out patches. These conductances could be classified into two groups according to the polarity of the current at a holding potential of +40 to +60 mV (with Ringer's in the pipette and pseudointracellular solution in the bath). Conductances mediating outward currents could be further divided into large- (64 +/- 4 pS, n = 4) and small- (16 +/- 1.7 pS, n = 11) conductance channels. Both small- and large-conductance channels were nonspecific cation channels. The large-conductance channel displayed bursting behavior at +40 mV, with flickering increasing at negative holding potentials to the point where single-channel currents were no longer discernible. The small-conductance channel did not display flickering behavior. The conductance mediating inward currents at +40 to +60 mV reversed at +73 +/- 4 mV (n = 4). The current traces displayed considerable fluctuations, and single-channel currents could not be discerned. The current fluctuations returned to baseline after removal of InsP3. The power density spectrum for the excess noise generated by InsP3 followed a 1/f dependence consistent with conductance fluctuations in the channel mediating this current, although other mechanisms are not excluded. These experiments demonstrate the presence of plasma membrane InsP3-gated channels of different ionic specificity in olfactory receptor cells.  相似文献   

7.
A M Starodub  J D Wood 《Life sciences》1999,64(26):PL305-PL310
Whole-cell perforated patch clamp recordings were used to analyze selectivity of omega-CgTx-MVIIC toxin for voltage-dependent calcium currents in cultured myenteric neurons from guinea-pig small intestine. Omega-CgTx-MVIIC (300 nM) blocked 37 +/- 9% of the peak current activated from -80 mV in 15 neurons by mostly affecting the plateau phase of the current. The toxin suppressed peak current activated from -30 mV dose-dependently with an IC50 of 70 +/- 8 nM. The blockade was complete at toxin concentrations of 1 microM. Thus, it appears that omega-CgTx-MVIIC blocks high voltage activated (HVA) calcium channels in the myenteric neurons unselectively as well as other types of HVA Ca2+ channels including P and Q channels.  相似文献   

8.
E Honoré  M Lazdunski 《FEBS letters》1991,287(1-2):75-79
K+ channel openers elicit K+ currents in follicle-enclosed Xenopus oocytes. The most potent activators are the pinacidil derivatives P1075 and P1060. The rank order of potency to activate K+ currents in follicle-enclosed oocytes was: P1075 (K0.5:5 microM) greater than P1060 (K0.5:12 microM) greater than BRL38227 (lemakalim) (K0.5:77 microM) greater than RP61410 (K0.5:100 microM) greater than (-)pinacidil (K0.5:300 microM). Minoxidil sulfate, nicorandil, RP49356 and diazoxide were ineffective. Activation by the K+ channel openers could be abolished by the antidiabetic sulfonylurea glibenclamide. It was not affected by the blocker of the Ca(2+)-activated K+ channels charybdotoxin. The various K+ channel openers failed to activate glibenclamide-sensitive K+ channels in defolliculated oocytes, but BRL derivatives (K0.5 for BRL38226 is 150 microM) and RP61419 inhibited a background current. The channel responsible for this background current is K+ permeable but not fully selective for K+. It is resistant to glibenclamide. It is inhibited by Ba2+, 4-aminopyridine, Co2+, Ni2+ and La3+.  相似文献   

9.
Outward K+ currents were recorded from 3-day-old embryonic chick ventricular myocytes using the patch clamp method. Two types of macroscopic outward currents were observed, one with rapid activation and de-activation time courses, and the other displaying a slower activation and long-duration tail currents. A time-dependent inactivation at positive potentials was a feature of the rapidly-activating current, allowing resolution of an early outward current. Single K+ channel currents were recorded using the outside-out patch technique. Two classes of K+ channels, which may contribute to the macroscopic currents, were differentiated on the basis of their conductances and kinetics. One class (ca 20 pS conductance) showed a rapid activation upon depolarization, and the other class (ca 60 pS) had a more delayed activation. A time-dependent inactivation of the rapid-activating, single-channel K+ current was also recorded. The two types of K+ channels contribute outward current during the plateau and promote the repolarization of the action potential, and the slowly de-activating K+ current may also be involved in the electrogenesis of automaticity observed in some of these cells.  相似文献   

10.
In smooth muscle cells, localized intracellular Ca2+ transients, termed "Ca2+ sparks," activate several large-conductance Ca2+-activated K+ (KCa) channels, resulting in a transient KCa current. In some smooth muscle cell types, a significant proportion of Ca2+ sparks do not activate KCa channels. The goal of this study was to explore mechanisms that underlie fractional Ca2+ spark-KCa channel coupling. We investigated whether membrane depolarization or ryanodine-sensitive Ca2+ release (RyR) channel activation modulates coupling in newborn (1- to 3-day-old) porcine cerebral artery myocytes. At steady membrane potentials of -40, 0, and +40 mV, mean transient KCa current frequency was approximately 0.18, 0.43, and 0.26 Hz and KCa channel activity [number of KCa channels activated by Ca2+ sparksxopen probability of KCa channels at peak of Ca2+ sparks (NPo)] at the transient KCa current peak was approximately 4, 12, and 24, respectively. Depolarization between -40 and +40 mV increased KCa channel sensitivity to Ca2+ sparks and elevated the percentage of Ca2+ sparks that activated a transient KCa current from 59 to 86%. In a Ca2+-free bath solution or in diltiazem, a voltage-dependent Ca2+ channel blocker, steady membrane depolarization between -40 and +40 mV increased transient KCa current frequency up to approximately 1.6-fold. In contrast, caffeine (10 microM), an RyR channel activator, increased mean transient KCa current frequency but did not alter Ca2+ spark-KCa channel coupling. These data indicate that coupling is increased by mechanisms that elevate KCa channel sensitivity to Ca2+ sparks, but not by RyR channel activation. Overall, KCa channel insensitivity to Ca2+ sparks is a prominent factor underlying fractional Ca2+ spark uncoupling in newborn cerebral artery myocytes.  相似文献   

11.
Application of arachidonic acid evoked robust activation of large-conductance K+ channels in cell-attached and excised inside-out patches from acutely isolated chick ciliary ganglion neurons. A similar effect was produced by 5,8,11,14-eicosatetraynoic acid, a nonmetabolizable analogue of arachidonic acid. The unitary conductance of fatty acid-activated channels was 35-40 pS at +20 mV with physiological gradients of K+ and 165 pS at +20 mV with an extracellular K+ concentration of 37.5 mM and an intracellular K+ concentration of 150 mM. Gating of these channels in cell-attached patches was potentiated by membrane stretch. Channel gating evoked by both lipids was concentration-dependent, with detectable activation apparent at 4 microM in the majority of patches and maximal activation occurring between 32 and 64 microM. Gating was relatively voltage-independent. Large-conductance K+ channels were also activated in inside-out patches by the monounsaturated fatty acid 11-cis-eicosenoic acid but not by the fully saturated fatty acid arachidic acid. Application of 100 microM H2O2, an agent that activates cytosolic phospholipase A2, also caused activation of large-conductance K+ channels in intact neurons. The stimulatory effects of H2O2 were blocked by pretreatment with 20 microM 4-bromophenacyl bromide, an irreversible inhibitor of phospholipase A2. Therefore, mobilization of endogenous fatty acids can cause activation of large-conductance K+ channels in autonomic neurons.  相似文献   

12.
Astrocytes (both type 1 and type 2), cultured from the central nervous system of newborn or 7 day old rats show voltage gated sodium and potassium channels that are activated when the membrane is depolarized to greater than -40 mV. The sodium channels in these cells have an h-infinity curve similar to that of nodal membranes but the activation (peak current-voltage) curves are shifted along the voltage axis by about +30 mV. These sodium currents are blocked only by high concentrations of tetrodotoxin. The voltage activated potassium currents in both types of astrocyte show at least two components; an inactivating component that is suppressed at holding potentials of greater than -40 mV and a persistent, non-inactivating current. Several types of single channel currents were observed in outside-out membrane patches from type 2 astrocytes. One type of potassium channel showed inactivation on depolarization and may contribute to the whole-cell inactivating current. In contrast, oligodendrocytes showed no obvious voltage gated membrane channels. The properties of the type 2 astrocyte-oligodendrocyte progenitor cell were investigated in two ways: 1) by examination of cells just beginning to differentiate along the "electrically silent" oligodendrocyte pathway or 2) by recording from progenitor cells cultured for 24 hours in the presence of cycloheximide to block the appearance of new membrane channels. In both cases, voltage gated inward (sodium) and outward (potassium) currents were noted. The outward current response showed both an inactivating and a non-inactivating component. Similar voltage activated inward and outward membrane currents were noted in reactive astrocytes freshly isolated (3-6 hours) from lesioned areas of adult rat brains.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
(1) Na+ currents and Na+ current fluctuations were measured in single myelinated nerve fibres of Rana esculenta under voltage-clamp conditions. The process of Na+ inactivation was modified by external treatment with 7 microM Anemonia Toxin II or by internal application of 20 or 40 mM IO3(-). (2) At depolarization of 24 and 32 mV the spectral density of Na+ current fluctuations could be described as the sum of two contributions, Sh(f) and Sm(f), representing the spectrum from fluctuations of the inactivation (h) and activation (m) gates, respectively. At higher depolarizations of 40 and 48 mV the low frequency (h) fluctuations could be better fitted by the sum, Sh1(f)+Sh2(f), of two separate Lorentzian functions. (3) The Na+ current and the variance of Na+ current fluctuations between 150 and 450 ms after depolarization are increased by one order of magnitude after application of Anemonia Toxin II or IO3(-). (4) The kinetics of Na+ current inactivation were described as A1 x exp(-t/tau h1) + A2 x exp(-t/tau h2) + B. The constant, tau h1, of fast Na+ inactivation was the same in normal and modified nerve fibres. The slow inactivation time constant, tau h2, increased with increasing depolarizations in modified fibres but decreased under control conditions. In all cases tau h2 showed a similar voltage dependence as the time constant found by fitting the low frequency fluctuations of Na+ current with one Lorentzian function, Sh(f). (5) It is concluded that Anemonia Toxin II and IO3(-) modify a fraction of Na+ channels in an all-or-none manner. A lower limit of the number of modified Na+ channels is estimated from the Na+ current and the variance Na+ current fluctuations. 7 microM external Anemonia Toxin II modifies more than 17% and 20 or 40 mM internal IO3(-) more than 8% of all Na+ channels. The inactivation gates in modified channels experience an electric field different from that in normal fibres.  相似文献   

14.
L-type Ca2+ channels are essential in triggering the intracellular Ca2+ release and contraction in heart cells. In this study, we used patch clamp technique to compare the effect of two pure enantiomers of L-type Ca2+ channel agonists: (+)-CGP 48506 and the dihydropyridine (+)-SDZ-202 791 in cardiomyocytes from rats 2-5 days old. The predominant Ca2+ current activated by standard step pulses in these myocytes was L-type Ca2+ current. The dihydropyridine antagonist (+)-PN200-110 (5 microM) blocked over 90% of Ca2+ currents in most cells tested. CGP 48506 lead to a maximum of 200% increase in currents. The threshold concentration for the CGP effect was at 1 microM and the maximum was reached at 20 microM. SDZ-202 791 had effects in nanomolar concentrations and a maximum effect at about 2 microM. The maximal effect of (+)-SDZ-202 791 was a 400% increase in the amplitude of Ca2+ currents and was accompanied by a 10-15 mV leftward shift in the voltage dependence of activation. CGP 48506 increased the currents equally at all voltages tested. Both compounds slowed the deactivation of tail currents and lead to the appearance of slowly activating and slowly deactivating current components. However, SDZ-202 791 had larger effects on deactivation and CGP 48506 had larger effect on the rate of Ca2+ current activation. The effect of SDZ-202 791 was fully additive to that of CGP 48506 even after maximum concentrations of CGP. This observation suggests that the two Ca2+ channel agonists may act at two different sites on the L-type Ca2+ channel. We suggest that CGP 48506 would be a potential cardiotonic agent without the deleterious proarrhythmic effects attributable to the dihydropyridine agonists.  相似文献   

15.
Fast-deactivating calcium channels in chick sensory neurons   总被引:8,自引:3,他引:5       下载免费PDF全文
Whole-cell Ca and Ba currents were studied in chick dorsal root ganglion (DRG) cells kept 6-10 in culture. Voltage steps with a 15-microseconds rise time were imposed on the membrane using an improved patch-clamp circuit. Changes in membrane current could be measured 30 microseconds after the initiation of the test pulse. Currents through Ca channels were recorded under conditions that eliminate Na and K currents. Tail currents, associated with Ca channel closing, decayed in two distinct phases that were very well fitted by the sum of two exponentials. The time constants tau f and tau s were near 160 microseconds and 1.5 ms at -80 mV, 20 degrees C. The tail current components, called FD and SD (fast-deactivating and slowly deactivating), are Ca channel currents. They were greatly reduced when Mg2+ replaced all other divalent cations in the bath. The SD component inactivated almost completely as the test pulse duration was increased to 100 ms. It was suppressed when the cell was held at membrane potentials positive to -50 mV and was blocked by 100-200 microM Ni2+. This behavior indicates that the SD component was due to the closing of the low-voltage-activated (LVA) Ca channels previously described in this preparation. The FD component was fully activated with 10-ms test pulses to +20 mV at 20 degrees C, and inactivated to approximately 30% during 500-ms test pulses. It was reduced in amplitude by holding at -40 mV, but was only slightly reduced by micromolar concentrations of Ni2+. Replacement of Ca2+ with Ba2+ increased the FD tail current amplitudes by a factor of approximately 1.5. The deactivation kinetics did not change (a) as channels inactivated during progressively longer pulses or (b) when the degree of activation was varied. Further, tau f was affected neither by changing the holding potential nor by varying the test pulse amplitude. Lowering the temperature from 20 to 10 degrees C decreased tau f by a factor of 2.5. In all cases, the FD component was very well fitted by a single exponential. There was no indication of an additional tail component of significant size. Our findings indicate that the FD component is due to closing of a single class of Ca channels that coexist with the LVA Ca channel type in chick DRG neurons.  相似文献   

16.
Intracellular recording from CA1 neurons confirmed that short periods of anoxia (95% N2 + 5% CO2 for 2-4 min) have a hyperpolarizing action, caused by a rise in K conductance. After blockage of K channels with extracellular Cs+ and tetraethylammonium (or intracellular Cs+), large inward currents of Ca were evoked by depolarizing pulses: transient currents at a holding potential near -70 mV, and more sustained ones near -50 mV. Both types of Ca current were much reduced or fully suppressed after 1-3 min of anoxia, but they largely (or fully) recovered within 1-10 min of starting reoxygenation.  相似文献   

17.
Pulmonary neuroepithelial bodies (NEB) form innervated cell clusters that express voltage-activated currents and function as airway O(2) sensors. We investigated A-type K(+) currents in NEB cells using neonatal rabbit lung slice preparation. The whole cell K(+) current was slowly inactivating with activation threshold of approximately -30 mV. This current was blocked approximately 27% by blood-depressing substance I (BDS-I; 3 microM), a selective blocker of Kv3.4 subunit, and reduced approximately 20% by tetraethylammonium (TEA; 100 microM). The BDS-I-sensitive component had an average peak value of 189 +/- 14 pA and showed fast inactivation kinetics that could be fitted by one-component exponential function with a time constant of (tau1) 77 +/- 10 ms. This Kv slowly inactivating current was also blocked by heteropodatoxin-2 (HpTx-2; 0.2 microM), a blocker of Kv4 subunit. The HpTx-2-sensitive current had an average peak value of 234 +/- 23 pA with a time constant (tau) 82 +/- 11 ms. Hypoxia (Po(2) = 15-20 mmHg) inhibited the slowly inactivating K(+) current by approximately 47%, during voltage steps from -30 to +30 mV, and no further inhibition occurred when TEA was combined with hypoxia. Nicotine at concentrations of 50 and 100 microM suppressed the slowly inactivating K(+) current by approximately 24 and approximately 40%, respectively. This suppression was not reversed by mecamylamine suggesting a direct effect of nicotine on these K(+) channels. In situ hybridization experiments detected expression of mRNAs for Kv3.4 and Kv4.3 subunits, while double-label immunofluorescence confirmed membrane localization of respective channel proteins in NEB cells. These studies suggest that the hypoxia-sensitive current in NEB cells is carried by slowly inactivating A-type K(+) channels, which underlie their oxygen-sensitive potassium currents, and that exposure to nicotine may directly affect their function, contributing to smoking-related lung disease.  相似文献   

18.
Lee DY  Chai YG  Lee EB  Kim KW  Nah SY  Oh TH  Rhim H 《Life sciences》2002,70(17):2047-2059
There is increasing evidence that estrogen influences electrical activity of neurons via stimulation of membrane receptors. Although the presence of intracellular estrogen receptors and their responsiveness in dorsal root ganglion (DRG) primary sensory neurons were reported, rapid electrical responses of estrogen in DRG neurons have not been reported yet. Therefore the current study was initiated to examine the rapid effects of estrogen on Ca2+ channels and to determine its detailed mechanism in female rat DRG neurons using whole-cell patch-clamp recordings. Application of 17beta-estradiol (1 microM) caused a rapid inhibition on high-voltage-activated (HVA)-, but not on low-voltage-activated (LVA)-Ca2+ currents. This rapid estrogen-mediated inhibition was reproducible and dose-dependent. This effect was also sex- and stereo-specific; it was greater in cells isolated from intact female rats and was more effective than that of 17alpha-estradiol, the stereoisomer of the endogenous 17alpha-estradiol. In addition, ovariectomy reduced the inhibition significantly but this effect was restored by administration of estrogen in ovariectomized subjects. Occlusion experiments using selective blockers revealed 17beta-estradiol mainly targeted on both L- and N-type Ca2+ currents. Overnight treatment of cells with pertussis toxin profoundly reduced 17beta-estradiol-mediated inhibition of the currents. On the other hand, estradiol conjugated to bovine serum albumin (EST-BSA) produced a similar extent of inhibition as 17beta-estradiol did. These results suggest that 17beta-estradiol can modulate L- and N-type HVA Ca2+ channels in rat DRG neurons via activation of pertussis toxin-sensitive G-protein(s) and non-genomic pathways. It is likely that such effects are important in estrogen-mediated modulation of sensory functions at peripheral level.  相似文献   

19.
Biochemical studies suggest that stimulation of aldosterone secretion by angiotensin II involves activation of voltage-dependent Ca2+ channels. We used an adrenocortical cell line (Y1) to study the effect of angiotensin II on transmembranous currents. The hormone (1 nM to 1 microM) caused depolarization of the plasma membrane (from -35 to 10 mV) and elicited repetitive action potentials. Using the whole-cell clamp technique, we identified two types of voltage-dependent Ca2+ currents which differed with respect to their threshold potential and time course of inactivation. Angiotensin II (1 nM to 1 microM) stimulated a slowly inactivating Ca2+ current on average up to 1.7-fold whereas a fast inactivating Ca2+ current remained almost unaffected by the hormone. Ca2+ currents were not influenced by forskolin (1 microM) or intracellularly applied cAMP (50 microM). Pretreatment of cells with pertussis toxin abolished the hormonal stimulation of the slowly inactivating Ca2+ current but was without effect on control currents. The toxin ADP-ribosylated a single membranous peptide of 40 kd Mr. An antiserum raised against a synthetic peptide corresponding to a region common to all sequenced alpha-subunits of guanine nucleotide-binding proteins (G-proteins) and an antiserum raised against a peptide corresponding to a region of alpha-subunits of Gi-like G-proteins reacted with membranous 40 kd peptides, whereas an antiserum raised against a synthetic peptide corresponding to a region specific for the alpha-subunit of the G-protein, G0, failed to recognize a peptide in the 39 to 40 kd region.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Using the whole-cell variation of the patch-clamp technique it has been determined that 0.25-3 mM bretylium tosylate (BT) exerts a repolarizing effect on partially depolarized human lymphocytes. The repolarizing effect was ouabain (40 microM)-sensitive, and was inhibited by the removal of external Na+ or by the Na(+)-channel-blocker amiloride (10-44 microM), but K(+)-channel-blockers 4-aminopyridine (0.1-5 mM) and quinine (100 microM) had no effect. The drug induced a sodium dependent, amiloride-sensitive transient inward current reaching its maximum value approx. 20-30 s after the administration of BT and lasting for 6-10 min. This current was activated by depolarization within 25 ms at around -42 mV, its inactivation took about 2 s and its reversal potential was +24 +/- 5 mV. An increase in the intracellular sodium concentration (1.8-3.2 mM) has been observed upon the addition of BT by monitoring the SBFI fluorescence of the dye-loaded cells. It has been shown that whole-cell K+ currents are significantly decreased by BT. The existence of voltage and ligand (BT)-gated sodium channels has been postulated in human lymphocytes. These channels are thought to participate in the initiation of membrane repolarization in human lymphocytes, and thereby influence mitogenic or antigen-induced cell-activation processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号