首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Meiosis reinitiation in oocytes (stage 5-6 of Dumont) isolated free of follicle cells by collagenase treatment from ovarian pieces of Xenopus laevis, was studied in observing the germinal vesicle breakdown (GVBD) provoked by progesterone and testosterone (0.1 nM-1 microM), alone or in association with insulin (30 micrograms/ml). Testosterone, was more active than progesterone to elicit GVBD in vitro, raising the question of the relative roles of both steroids in the physiological maturation process in vivo. The potentiating effect of insulin, already observed on progesterone action, was also demonstrated upon testosterone effect; the results suggested that it occurs during the early phase of hormone-induced meiosis reinitiation.  相似文献   

2.
The mechanism of steroid hormone-induced reinitiation of meiosis in Xenopus laevis oocytes in vitro involves interaction of the hormone with an ooplasma membrane receptor and early changes of enzymatic activities (adenylate cyclase, p48 protein kinase). In full-grown (stage 6) oocytes, we have observed cytochemically, at the ultrastructural level, alkaline phosphatase activity in the ooplasma membrane of microvilli, its decrease by 2 hr of progesterone action, and its complete disappearance at the time of germinal vesicle breakdown (GVBD). Insulin (30 micrograms/ml) also provoked a decrease of phosphatase activity, although it did not promote GVBD under these circumstances. When oocytes were exposed simultaneously to progesterone (1 microM) and insulin (30 micrograms/ml), the enzymatic activity disappeared earlier than with any one of them, correlating with the faster occurrence of GVBD. Inhibitors of alkaline phosphatase activity and competitive substrates potentiated progesterone action on GVBD. Insulin and beta-glycerophosphate potentiating activities were additive. These results suggest that the ooplasma membrane alkaline phosphatase may be implicated in the course of reinitiation of meiosis in X. laevis oocytes.  相似文献   

3.
The involvement of protein kinase C (PKC) and arachidonic acid (AA) pathways were investigated in the GnRH regulation of oocyte meiosis and follicular testosterone production in the goldfish ovary. The results clearly demonstrate differences in the postreceptor mechanisms involving the stimulatory and inhibitory actions of GnRH peptides on basal and gonadotropin (GtH)-induced reinitiation of oocyte meiosis and steroidogenesis. In isolated goldfish follicles in vitro, the observed stimulatory effects of both salmon GnRH (sGnRH) and chicken GnRH-II (cGnRH-II) on germinal vesicle breakdown were completely blocked by addition of PKC inhibitors, suggesting the involvement of PKC, presumably through activation of phospholipase C/diacylglycerol pathways in the GnRH-induced reinitiation of oocyte meiosis. Administration of an AA metabolism inhibitor, however, only blocked the stimulatory effect of sGnRH without affecting cGnRH-II-induced meiosis. As observed previously, in the presence of GtH, sGnRH was found to inhibit GtH-induced resumption of meiosis and testosterone production, whereas cGnRH-II was without effect. The inhibitory effect of sGnRH on GtH-induced meiosis and steroidogenesis was completely reversed by addition an AA metabolism inhibitor, whereas PKC inhibitors had no effect. These findings provide functional evidence in support of the novel hypothesis that goldfish ovarian follicles contain GnRH-receptor subtypes with different ligand selectivity mediating stimulatory and inhibitory actions of sGnRH and cGnRH in the goldfish ovary.  相似文献   

4.
There is a membrane progesterone receptor in Xenopus laevis oocytes that undergo meiosis under steroid exposure. Early responses include a decrease of leucine uptake, a decrease of adenylate cyclase and alkaline phosphatase activities, and a decrease of the phosphorylation of a specific p48 protein in the membrane. These results are compatible with a decrease of membrane fluidity brought about by the hormonal message. However the above-cited effects as well as the Ca2+-changes are not yet enough well understood to be able to precisely delineate their role in meiosis reinitiation.  相似文献   

5.
The features of steroidogenesis of immature mouse ovaries in culture under the influence of follicle-stimulating hormones (FSH), human chorionic gonadotropin (hCG), epidermal growth factor (EGF) and insulin have been investigated during the period of reinitiation of meiosis in the oocytes. Secretion of progesterone is stimulated after addition of FSH, hCG and of insulin and EGF combination to the medium. EGF increases FSH-stimulated progesterone secretion and inhibits estradiol secretion. The ratios progesterone/estradiol and testosterone/estradiol increase, when EGF is added to the culture medium. It is analogous to the action of hCG. It is suggested that EGF may be an intrafollicular EGF regulator of luteinizing hormone action on the sex and somatic cells of the mammalian ovaries.  相似文献   

6.
Influences of steroid hormone additions or of their binding by specific antisera on nuclear maturation and subsequent fertilization and cleavage of bovine oocytes were studied in vitro. It was found that progesterone in doses of 50 ng/ml, 250 ng/ml, 1 μg/ml or 5 μg/ml stimulates reinitiation and in doses of 1 or 5 μg/ml stimulates further development of meiosis. Antiserum to progesterone had opposite effects on nuclear maturation, but has no influence on the ability of matured oocytes to subsequent fertilization and cleavage. Testosterone additions (10 ng, 100 ng, 1 μg or 5 μg/ml) did not influence nuclear maturation, but antiserum to this hormone inhibited both meiosis reinitiation and completion, as well as lowered the rate of oocytes fertilized and embryos obtained. Estradiol (5, 50, 100 or 500 ng or 5 μg/ml) treatment stimulated reinitiation, but not nuclear maturation. Antiserum to estradiol activated both reinitiation, development and completion of meiosis, but the cells matured by estradiol deficit were as a rule uncapable of fertilization and further cleavage. Estradiol addition (1 μg/ml) to maturation medium together with FSH (10 μg/ml) (but not of FSH alone) lead to a significantly higher rate of fertilization and cleavage of matured cells.

Results obtained suggest (1) relative independence of reinitiation, further development of nuclear maturation and cytoplasmic maturation regulation in bovine oocytes as well as (2) the involvement of steroid hormones in these three processes.  相似文献   


7.
MAP kinase activation occurs during meiotic maturation of oocytes from all animals, but the requirement for MAP kinase activation in reinitiation of meiosis appears to vary between different classes. In particular, it has become accepted that MAP kinase activation is necessary for progesterone-stimulated meiotic maturation of Xenopus oocytes, while this is clearly not the case in other systems. In this paper, we demonstrate that MAP kinase activation in Xenopus oocytes is an early response to progesterone and can be temporally dissociated from MPF activation. We show that MAP kinase activation can be suppressed by treatment with geldanamycin or by overexpression of the MAP kinase phosphatase Pyst1. A transient and low-level early activation of MAP kinase increases the efficiency of cell cycle activation later on, when MAP kinase activity is no longer essential. Many oocytes can still undergo reinitiation of meiosis in the absence of active MAP kinase. Suppression of MAP kinase activation does not affect the formation or activation of Cdc2-cyclin B complexes, but reduces the level of active Cdc2 kinase. We discuss these findings in the context of a universal mechanism for meiotic maturation in oocytes throughout the animal kingdom.  相似文献   

8.
In Bufo arenarum, progesterone is the physiological maturation inducer. However, in this species, oocytes reinitiate meiosis with no need of an exogenous hormonal stimulus when deprived of their enveloping cell, a phenomenon called spontaneous maturation. We demonstrated that in Bufo arenarum spontaneous maturation occurs only in oocytes obtained during the reproductive period, which can be considered competent to mature spontaneously, in contrast to those in the non-reproductive period, which are incompetent. Interestingly, full-grown Bufo arenarum oocytes always respond to progesterone regardless of the season in which they are obtained. There is a general consensus that both a transient increase in intracellular calcium and a decrease in cAMP-dependent protein kinase activity are the first steps in the mechanisms by which progesterone induces maturation in amphibians. In the present work we analysed the role of calcium in the spontaneous and progesterone-induced maturation of Bufo arenarum oocytes. Results demonstrated that the absence of calcium in the incubation medium or the prevention of Ca(2+) influx by channel blockers such as CdCl2 or NiCl2 did not prevent meiosis reinitiation in either type of maturation. The inhibition of the Ca(2+)-calmodulin complex in no case affected the maturation of the treated oocytes. However, when the oocytes were deprived of calcium by incubation in Ca(2+)-free AR + A23187, meiosis resumption was inhibited. In brief, we demonstrated that in Bufo arenarum the reinitiation of meiosis is a process independent of extracellular calcium at any period of the year and that oocytes require adequate levels of intracellular calcium for germinal vesicle breakdown to occur.  相似文献   

9.
Induction of meiosis in Rana pipiens oocytes in vitro was studied using intracellular electrophysiological recordings and a morphological count of nuclear dissolution. In type III (i.e., defolliculated theca-free, with follicle cells) and type IV (i.e., denuded lacking follicle cells) Rana oocytes (Schuetz and Lessman, '82), Na+-insulin evoked nuclear or germinal vesicle dissolution (GVD), apparent reinitiation of meiosis, and marked reductions in cellular membrane potential and membrane current. Electrophysiological indications of the reinitiation of oocyte meiosis were most strongly apparent in the marked reduction (ca.98%) of membrane current. The overall GVD activity of insulin was reduced but not totally absent in type IV oocytes compared to type III cells that received similar hormone treatment, confirming previously published findings that the follicle wall enhances insulin-induced GVD. Results confirm insulin GVD activity in this system and demonstrate that insulin-induced reinitiation of meiosis is associated with changes in membrane-associated parameters that are indistinguishable from those induced by progesterone. These results raise interesting questions concerning the cellular mechanism by which two chemically dissimilar hormones (i.e., steroid vs. protein) have similar or even identical effects on a cell such as the oocyte. The findings presented are consistent with the concept that more than one hormone may be involved in meiotic maturation of the oocyte.  相似文献   

10.
The protoprotein aequorin was used in order to monitor Ca2+ transients in conditions where progesterone induced maturation was reversibly inhibited. Propionate but not isethionate Cl-free medium impaired both meiosis reinitiation and the Ca2+ transient, unless oocytes were returned to normal Cl-containing medium. Similar results were obtained with the protein synthesis inhibitor cycloheximide. In both cases, the incidence of germinal vesicle breakdown (GVBD) and the time schedule relating it to the Ca2+ surge appeared not very different from that found from control oocytes. The evidence suggests that both treatments act on the initial step by which progesterone triggers the intracellular Ca2+ release needed for maturation promoting factor (MPF) elaboration. No definitive conclusion can be reached however from these experiments concerning the need for protein synthesis during meiosis reinitiation.  相似文献   

11.
We have demonstrated that when Rana oocytes are treated with 10 mM acrylamide, germinal vesicle migration (GVM) is promoted while meiosis reinitiation by progesterone is inhibited. A number of other specific alterations result from the acrylamide treatment: (i) A dense band of fibrillar material appears adjacent to the oolemma in acrylamide-treated oocytes. Furthermore, (ii) the fibrillar material reacts with an intermediate filament antibody using immunogold techniques applied to transmission electron microscopy. Moreover, (iii) acrylamide inhibits progestogen-induced annulate lamellae breakdown. In addition, (iv) the cortical mitochondria-rich layer appears to be thickened by acrylamide, which also (v) affects oocyte microvillar retraction and organization. Finally, (vi) electrophysiological measurement of membrane voltage indicates that acrylamide does not significantly affect cell viability during the incubation period used in this study. In summary, acrylamide exerts profound effects on the physiological event of GVM, and these are consistent with the hypothesis that changes in the cytoskeleton are a contributing factor in meiosis reinitiation.  相似文献   

12.
Demecolcine (Colcemid; DE), a colchicine derivative, augmented meiosis reinitiation by progesterone in the follicle-enclosed oocyte of the frog, Rana pipiens. Whereas DE treatment alone had a minor stimulatory effect on germinal vesicle dissolution (GVD), this treatment elicited significant germinal vesicle movement (GVM) as evidenced by translocation of the GV to the oocyte surface. The effects of DE on GVM and progesterone-induced GVD were also elicited in oocytes lacking follicle cells or other follicle wall components (type IV follicles), indicating that DE has a direct action on the oocyte itself. DE alone did not alter oocyte membrane voltage (Vm), resistance (Rm), or current (Im) and did not interfere with the changes in these parameters usually elicited by progesterone. After 5 hr incubation of follicle-enclosed oocytes with either DE or progesterone, or combinations of both, the GV could be moved to the animal pole surface with less centrifugal force compared to control follicles. This result suggests that a decrease in ooplasmic viscoelasticity is induced by progesterone, which is mimicked by DE before GVM or GVD normally begins. The results presented here support the idea that DE-sensitive oocyte components such as microtubules are involved in the process of steroid-induced meiosis. These findings provide a physiological basis for future studies of cytoskeletal involvement in the events of meiosis.  相似文献   

13.
In the oocytes of many animals, the germinal vesicle (GV) relocates from the center to the periphery of the oocyte upon meiosis reinitiation, which is a prerequisite to the formation of meiotic spindles beneath the cell surface in order for meiosis to succeed. In the present study, we have investigated nuclear positioning using sea-cucumber oocytes. Upon meiosis reinitiation, the GV relocates to the cell periphery beneath a surface protuberance. After GV breakdown, polar bodies were extruded from the top of the protuberance, which we therefore called the animal pole process. The GV relocation was inhibited by nocodazole but not by cytochalasin. Immunofluorescent staining and electron microscopy of microtubular arrays revealed that: (i) in immature oocytes, two centrosomes were situated beneath the animal pole process far apart from the GV, anchoring to the cortex via astral microtubules; (ii) upon meiosis reinitiation, microtubular bundles were newly formed between the centrosomes and the GV; and (iii) the microtubular bundles became short as GV migration proceeded. These observations suggest that microtubules and centrosomes participate in GV relocation. A very large mass of annulate lamellae, having a 20-microm diameter, was found in the vegetal pole of the oocytes.  相似文献   

14.
Stimulation and inhibition of rat oocyte meiosis by forskolin   总被引:2,自引:0,他引:2  
The adenylate cyclase activator forskolin was used to study the role of cAMP for oocyte meiosis and follicular steroid secretion. Follicular and cumulus cAMP production was stimulated dose-dependently by forskolin, as was the follicular secretion of progesterone, testosterone and estradiol. Forskolin induced meiosis in follicle-enclosed oocytes with a maximal effect at 1 microM, with lower and higher concentrations being less effective. The spontaneous resumption of meiosis in isolated cumulus-enclosed oocytes was dose-dependently retarded by forskolin. Meiosis of cumulus-free oocytes was also retarded but only slightly. These data support the earlier hypothesis that a limited increase in follicular cAMP levels triggers meiosis, whereas sustained levels of cAMP in the oocyte itself prevent meiosis.  相似文献   

15.
The effect of weak bases on starfish oocyte maturation induced by 1-methyladenine (1-MeAde) was investigated. Ammonium chloride, nicotine, and procaine inhibited meiosis reinitiation induced by either 1-MeAde or dithiothreitol. The inhibitory effect of the weak bases was highly dependent on the pH of sea water and increased with the increase in pH. These weak bases neither inhibited nor delayed meiosis reinitiation when given after the end of the hormone-dependent period, the period during which 1-MeAde is required for meiosis to occur, whereas they blocked hormone action when added just before the end of the hormone-dependent period.  相似文献   

16.
Summary

G2-arrested marine invertebrate oocytes are triggered to reenter the cell cycle by different extracellular signals (sperm, hormones and mimetics). They respond to competent signals either by germinal vesicle breakdown (for those arrested in prophase I) or by polar body emission (for those arrested in metaphase I or II). These cellular responses are easy to observe and quantify thus making of meiosis reinitiation an attractive model to study the transduction of signals endogenous to oocytes. Given the universal character of transmembrane coupling molecules and intracellular effectors, the specificity of cell and, in particular, oocyte response to an extracellular signal are mediated by the presence of specific receptors and by a specific set of intracellular effectors that are activated by them. In this paper we discuss the current limitations in molecular and pharmacological identification and characterization of invertebrate oocyte receptors. We next analyze signalling pathways triggered by activation of relevant receptors and the cross-talk existing between them. The above aspects are discussed on the examples of serotonin-induced meiosis reinitiation in prophase I-arrested oocytes of Spisula solidissima and on KCl-induced meiosis reinitiation of metaphase I-arrested Mytilus galloprovincialis oocytes taken as paradigms.  相似文献   

17.
The specific activity of acid phosphatase in male and female rats follows a circadian rhythm. Preincubation of liver microsomes with testosterone led to an increase of phosphatase activity and a loss of circadian rhythm. NADH 5 alpha-reductase was inactivated by several animal and bacterial acid and alkaline phosphatases while the acid phosphatase from potatoes was ineffective. The extent of inhibition depends on the course of circadian rhythm of NADH 5 alpha-reductase activity. Preincubation of microsomes in the presence of testosterone inhibited the NADH 5 alpha-reduction of testosterone. No such inhibition was observed after preincubation of microsomes with progesterone.  相似文献   

18.
The mitogen-activated protein kinase (MAP kinase) signalling cascade activated by fibroblast growth factors (FGF1 and FGF2) was analysed in a model system, Xenopus oocytes, expressing fibroblast growth factor receptors (FGFR1 and FGFR4). Stimulation of FGFR1 by FGF1 or FGF2 and FGFR4 by FGF1 induced a sustained phosphorylation of extracellular signal-regulated protein kinase 2 (ERK2) and meiosis reinitiation. In contrast, FGFR4 stimulation by FGF2 induced an early transient activation of ERK2 and no meiosis reinitiation. FGFR4 transduction cascades were differently activated by FGF1 and FGF2. Early phosphorylation of ERK2 was blocked by the dominant negative form of growth factor-bound protein 2 (Grb2) and Ras, for FGF1-FGFR4 and FGF2-FGFR4. The phosphatidylinositol 3-kinase (PI3 kinase) inhibitors wortmannin and LY294002 only prevented the early ERK2 phosphorylation triggered by FGF2-FGFR4 but not by FGF1-FGFR4. ERK2 phosphorylation triggered by FGFR4 depended on the Grb2/Ras pathway and also involved PI3 kinase in a time-dependent manner.  相似文献   

19.
The role of androgen and androgen receptors (ARs) in males has been well established. This steroid and its receptor also exist in follicles, but their functions are still unclear. In this study, using a culture system containing a low dose of hypoxanthine, we revealed the positive contribution of testosterone to oocyte meiotic resumption. By performing ultracentrifugation to allow clear visualization of porcine germinal vesicles, our results provide evidence that mitogen-activated protein kinase (MAPK) in the oocyte itself but not in cumulus cells was activated before germinal vesicle breakdown (GVBD) after testosterone treatment. We further explored the signal cascade of testosterone-triggered GVBD and showed significant contributions of AR to testosterone-induced MAPK activation and GVBD. By using a potent and selective inhibitor of SRC and detecting activation of the kinase, we found that testosterone activated SRC in oocytes but not in cumulus cells and that SRC (as an essential upstream molecule of MAPK) mediated this testosterone- and AR-promoted reinitiation of meiosis. The present findings propose an undefined signaling pathway and suggest the potential competence of testosterone for meiotic resumption in mammalian oocytes.  相似文献   

20.
Injections of the regulatory subunit of type I cAMP-dependent protein kinase, of the heat-stable inhibitor protein of cAMP-dependent protein kinase and of calmodulin have no effect on meiosis reinitiation. Drugs, including theophylline, caffeine and procaine, which have been shown previously to inhibit 1-methyladenine (1-MeAde)-induced Ca2+ release, both in living starfish oocytes and from plasma membrane-rich fractions obtained from isolated cortices, inhibit meiosis reinitiation when added before—but not after—the end of the hormone-dependent period (period when presence of the hormone in the medium is required for meiosis to occur). In the same conditions, theophylline suppresses 1-MeAde-induced stimulation of protein phosphorylation. Injection of cholera toxin subunit A increases oocyte sensitivity to 1-MeAde. Catalytic subunit of cAMP-dependent protein kinase (C) inhibits meiosis reinitiation when injected before the end of the hormone-dependent period. Oocytes can be released from inhibition due to C injection by raising 1-Me-Ade concentration. These findings support the view that Ca2+ release occurs until transduction of the hormonal message (i.e., its intramembrane transfer) has been completed and show that protein phosphorylation remains under plasma membrane control until that time. They also suggest that transduction of the hormonal message might be modulated by intracellular cAMP and membrane phosphorylation, although cAMP content does not change following 1-MeAde addition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号