首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The occurrence of tight junctions between Sertoli cells, providing the structural basis of the blood-testis barrier, has been studied using hypertonic fixative and lanthanum tracer in the testes of seven species of vertebrates having different testicular organization. In all cases inter-Sertoli tight junctions, establishing an effective barrier, appear either when meiosis is complete (teleosts and amphibians, both with cystic testes) or immediately after the onset of meiosis (reptiles and birds, both having testes consisting of seminiferous tubules). In the cystic testes, tight junctions are regularly associated with desmosomes, whereas in testes with seminiferous tubules, cisternae of the endoplasmic reticulum are present beneath the junctions (subsurface cisternae). The avian testes examined have, in addition, septate-like junctions between the Sertoli cells but before the tight junctions.Dedicated to Prof. Dr. H. Rollhäuser, Münster, on the occasion of his 65th birthday.  相似文献   

2.
The blood-brain barrier (BBB) is constituted by a specialized vascular endothelium that interacts directly with astrocytes, neurons and pericytes. It protects the brain from the molecules of the systemic circulation but it has to be overcome for the proper treatment of brain cancer, psychiatric disorders or neurodegenerative diseases, which are dramatically increasing as the population ages. In the present work we have revised the current knowledge on the cellular structure of the BBB and the different procedures utilized currently and those proposed to cross it. Chemical modifications of the drugs, such as increasing their lipophilicity, turn them more prone to be internalized in the brain. Other mechanisms are the use of molecular tools to bind the drugs such as small immunoglobulins, liposomes or nanoparticles that will act as Trojan Horses favoring the drug delivery in brain. This fusion of the classical pharmacology with nanotechnology has opened a wide field to many different approaches with promising results to hypothesize that BBB will not be a major problem for the new generation of neuroactive drugs. The present review provides an overview of all state-of-the-art of the BBB structure and function, as well as of the classic strategies and these appeared in recent years to deliver drugs into the brain for the treatment of Central Nervous System (CNS) diseases.  相似文献   

3.
Summary The ultrastructural organization of ommatidial components of the retina of the moth, Galleria mellonella are described from electron microscopic observations. Each ommatidium is composed of 12 common retinula cells and one basal eccentric cell. The retinula cells are connected together by a desmosomal strip along their length. The rhabdom occupies the basal thirty percent of the ommatidium and can be divided into nine segments of parallel microvilli. Several cells may contribute to an individual rhabdomere. The rhabdomeres are arranged in a cross with single cell rhabdomeres lying between the arms of the cross. Thin sections of ommatidium absorb polarized light differentially. The total amount of plane polarized light absorbed varies with angle of rotation for an entire ommatidium but there are also differences between the amount of absorption of adjacent rhabdomeric segments. Galleria appears to be the only lepidopteran in which the possibility of the polarized light reception has been reported.  相似文献   

4.
The blood-brain barrier (BBB) is composed of the cerebral microvascular endothelium, which, together with astrocytes, pericytes, and the extracellular matrix (ECM), contributes to a "neurovascular unit". It was our objective to clarify the impact of endogenous extracellular matrices on the barrier function of BBB microvascular endothelial cells cultured in vitro. The study was performed in two consecutive steps: (i) The ECM-donating cells (astrocytes, pericytes, endothelial cells) were grown to confluence and then removed from the growth substrate by a protocol that leaves the ECM behind. (ii) Suspensions of cerebral endothelial cells were seeded on the endogenous matrices and barrier formation was followed with time. In order to quantify the tightness of the cell junctions, all experiments were performed on planar gold-film electrodes that can be used to read the electrical resistance of the cell layers as a direct measure for endothelial barrier function (electric cell-substrate impedance sensing, ECIS). We observed that endogenously isolated ECM from both, astrocytes and pericytes, improved the tightness of cerebral endothelial cells significantly compared to ECM that was derived from the endothelial cells themselves as a control. Moreover, when cerebral endothelial cells were grown on extracellular matrices produced by non-brain endothelial cells (aorta), the electrical resistances were markedly reduced. Our observations indicate that glia-derived ECM - as an essential part of the BBB - is required to ensure proper barrier formation of cerebral endothelial cells.  相似文献   

5.
Horseradish peroxidase (HRP) was intravenously injected into guinea-pigs to ultrastructurally examine the permeability of the blood/air barrier. Adults were given 300 mg/kg of the tracer in a small volume of saline, anesthetized and sacrificed at intervals by either intratracheal filling or right ventricular perfusion with 3% glutaraldehyde. The reaction product had passed through endothelial clefts and accumulated in the interstitium as early as 1.5 min after injection. This same degree of penetration occurred with either fixation method used. Tight junctions between pneumocytes prevented passage of the reaction product into alveoli. Pinocytotic vesicles were numerous in both endothelial and epithelial cells, but did not significantly contribute to tracer transport. Ten minutes post-injection was selected as optimal for this model since the highest concentration of tracer was found in the tissues at this time.  相似文献   

6.
Summary The present investigation analyzes intercellular junctions in tissues with different developmental capacities. The distribution of junctions was studied inDrosophila embryos, in imaginal disks, and in cultures of disk cells that were no longer able to differentiate any specific pattern of the adult epidermis.The first junctions —primitive desmosomes andclose membrane appositions — already appear in blastoderm.Gap junctions are first detected in early gastrulae and later become more and more frequent.Zonulae adhaerentes are formed around 6 h after fertilization, whileseptate junctions appear in the ectoderm of 10-h-old embryos.Inwing disks of all stages studied (22–120 h), three types of junctions are found: zonulae adhaereentes, gap junctions, and septate junctions. Gap junctions, which are rare and small at 22 h, increase in number and size during larval development. The other types of junctions are found between all cells of a wing disk throughout development.All types of junctions that are found in normal wing disks are also present in theimaginal disk tissues cultured in vivo for some 15 years and in thevesicles of imaginal disk cells grown in embryonic primary cultures in vitro. However, gap junctions are smaller and in the vesicles less frequent than in wing disks of mature larvae.Thus gap junctions, which allow small molecules to pass between the cells they connect, are present in the early embryo, when the first developmental decisions take place, and in all imaginal disk tissues studied, irrespective of whether or not these are capable of forming normal patterns.  相似文献   

7.
In order to evaluate blood brain barrier (BBB) integrity and intra-BBB IgG synthesis under CSF pathologic conditions, it is necessary to establish normal values in a control population. In this study an evaluation was made of the blood brain barrier (BBB) integrity and intra-BBB IgG synthesis in the central nervous system (CNS) of normal juvenile rhesus monkeys to establish these values. Parallel cisternal cerebral spinal fluid (CSF) and venous serum samples were collected from 12 healthy male rhesus monkeys. Normal values for CSF/serum ratios of IgG and of albumin were determined and incorporated in theTourtellotte formula for quantitation of intrathecally synthesized IgG per 24 hours. The effect of systemic mannitol administration on the BBB was also evaluated by the primate adapted formula and magnetic resonance imaging contrast enhanced studies.  相似文献   

8.
Summary Brain microvessel endothelial cells (BMEC) exhibit the tendency to migrate through 3.0-vm pore semipermeable inserts and establish monolayers on both apical and basal filter surfaces. This can potentially lead to complications in accurately assessing a wide variety of physiologic parameters uniquely associated with these cells. To avoid this problem, we have explored growing BMEC on Transwell filters coated with hydrated collagen gels. BMEC seeded on such gels grow as a monolayer until confluency, but do not invade the subendothelial collagen matrix or the underlying support filter. Furthermore, BMEC grown in this manner exhibit biochemical, morphologic, and electrophysiologic properties reflective of the endothelial cells that comprise the blood-brain barrier in vivo. Although the collagen gel acts as an impenetrable barrier to BMEC, and thus ensures the growth of only a single layer of cells, it nevertheless can be infiltrated by monocytes that have been stimulated by a chemotaxin to undergo diapedesis. Thus, growing BMEC on collagen gel-coated Transwells has broad applications for the in vitro study of both blood-brain barrier physiology as well as the mechanisms underlying central nervous system inflammation.  相似文献   

9.
P-glycoprotein (P-gp), an adenosine triphosphate (ATP)-binding cassette transporter which acts as a drug efflux pump, is highly expressed at the blood-brain barrier (BBB) where it plays an important role in brain protection. Recently, P-gp has been reported to be located in the caveolae of multidrug-resistant cells. In this study, we investigated the localization and the activity of P-gp in the caveolae of endothelial cells of the BBB. We used an in vitro model of the BBB which is formed by co-culture of bovine brain capillary endothelial cells (BBCEC) with astrocytes. Caveolar microdomains isolated from BBCEC are enriched in P-gp, cholesterol, caveolin-1, and caveolin-2. Moreover, P-gp interacts with caveolin-1 and caveolin-2; together, they form a high molecular mass complex. P-gp in isolated caveolae is able to bind its substrates, and the caveolae-disrupting agents filipin III and nystatin decrease P-gp transport activity. In addition, mutations in the caveolin-binding motif present in P-gp reduced the interaction of P-gp with caveolin-1 and increased the transport activity of P-gp. Thus, P-gp expressed at the BBB is mainly localized in caveolae and its activity may be modulated by interaction with caveolin-1.  相似文献   

10.
Summary In the hermaphroditic pulmonate snail Lymnaea stagnalis a blood-gonad (blood-testis) barrier appears to exist. Septate junctions between Sertoli cells and epithelial cells of the neck areas of the gonadal acini constitute this barrier; they separate the male from the female compartment. Experiments with tracer substances (colloidal gold particles, lanthanum nitrate, tannic acid) showed that the basal lamina around the acini hardly forms a barrier; only the larger colloidal gold particles do not pass this lamina.Physiologically, the blood-gonad barrier is apparent in studies on the composition of gonadal fluid, which differs considerably from that of haemolymph. The osmolarity and the concentration of protein and amino acids in gonadal fluid exceed those of haemolymph. As to the major ions, in the gonadal fluid Na+ is partly replaced by K+, and HCO 3 - is almost totally replaced by Cl-. Such a distribution of HCO 3 - and Cl- is indicative of metabolic acidosis. The cytochemical localization of carbonic anhydrase activity in cells lining the acinar lumen (Sertoli cells, epithelial cells) suggests that these cells are involved in the process of ion exchange. The metabolic acidosis in the gonad might result from the anaerobic production of lactate and succinate by Sertoli cells; these cells lack the enzymes cytochrome oxidase, lactate dehydrogenase, and succinate dehydrogenase. Spermatogenic cells, on the other hand, do possess these enzymes. This probably indicates that these cells metabolize lactate and succinate secreted by Sertoli cells.The authors are greatly indebted to Prof. Dr. H.H. Boer for stimulating comments during this study, to Dr. C.J.F. van Noorden and Miss Ilse M.C. Vogels for localization of dehydrogenase activity; to Mr. R. van Elk for determining amino acids, and to Dr. W.P.W. van der Knaap for performing the agglutinin assay  相似文献   

11.
Summary The role of specific transferrin (Tf) and Tf receptor interaction on brain capillary endothelial cells in iron transport from the plasma to the brain was investigated by using Tf from several species of animals labeled with 59Fe and 125I, and 15-day and adult rats. The rate of iron transfer was much greater in the 15-day rats. It was greatest with Tf from the mammals, rat, rabbit and human, but much lower with chicken ovotransferrin and quokka (a marsupial), toad, lizard, crocodile, and fish Tf. The uptake of Tf by the brain showed a similar pattern, except for a very high uptake of ovotransferrin (ovo Tf). Iron uptake by the femurs (a source of bone marrow) was also high with Tf from the mammalian species and low with the other types of Tf, but showed little change with aging of the animals. It is concluded that iron transport into the brain is dependent on the function of Tf receptors, probably on capillary endothelial cells, and that these receptors show the same type of species specificity as the receptors on immature erythroid cells. Also, the decrease in iron uptake by the brain as rats age from 15 days to adulthood is specific for the brain and is not a general effect of the aging process.Abbreviations Tf transferrin - ovo Tf ovotransferrin  相似文献   

12.
Neural circuit function is vulnerable to hyperthermic failure but can be protected by stress pretreatments, such as exposure to a brief, sub-lethal high temperature (heat shock, HS), by increasing the time to failure and decreasing the time to recover.

Insects provide excellent model systems to investigate potential mechanisms underlying thermotolerant operation.

Induced thermotolerance is mediated by increased expression of heat shock proteins, HSPs, notably HSP70. Enhanced expression of HSP70 by increasing the gene dosage does not improve HS-induced thermotolerance of larval locomotion or locomotor central pattern generation in Drosophila.

Prior stress down-regulates neuronal K+ currents and this is associated with adaptive increases in the duration of action potentials.

Hyperthermic failure and recovery of the ventilatory central pattern generator in locusts is tightly correlated with a catastrophic increase in extracellular K+ concentration and its subsequent restoration.

These, and other data, suggest that neural circuit function can be protected by a stress-induced upregulation of HSPs that stabilize the cytoskeleton and preserve the operation of important membrane proteins such as ion channels, receptors and the Na+/K+-ATPase.  相似文献   


13.
There is considerable current interest in the neuroprotective effects of flavonoids. This study focuses on the potential for dietary flavonoids, and their known physiologically relevant metabolites, to enter the brain endothelium and cross the blood-brain barrier (BBB) using well-established in vitro models (brain endothelial cell lines and ECV304 monolayers co-cultured with C6 glioma cells). We report that the citrus flavonoids, hesperetin, naringenin and their relevant in vivo metabolites, as well as the dietary anthocyanins and in vivo forms, cyanidin-3-rutinoside and pelargonidin-3-glucoside, are taken up by two brain endothelial cell lines from mouse (b.END5) and rat (RBE4). In both cell types, uptake of hesperetin and naringenin was greatest, increasing significantly with time and as a function of concentration. In support of these observations we report for the first time high apparent permeability (Papp) of the citrus flavonoids, hesperetin and naringenin, across the in vitro BBB model (apical to basolateral) relative to their more polar glucuronidated conjugates, as well as those of epicatechin and its in vivo metabolites, the dietary anthocyanins and to specific phenolic acids derived from colonic biotransformation of flavonoids. The results demonstrate that flavonoids and some metabolites are able to traverse the BBB, and that the potential for permeation is consistent with compound lipophilicity.  相似文献   

14.
The blood-brain barrier: connecting the gut and the brain   总被引:1,自引:0,他引:1  
Banks WA 《Regulatory peptides》2008,149(1-3):11-14
The BBB prevents the unrestricted exchange of substances between the central nervous system (CNS) and the blood. The blood-brain barrier (BBB) also conveys information between the CNS and the gastrointestinal (GI) tract through several mechanisms. Here, we review three of those mechanisms. First, the BBB selectively transports some peptides and regulatory proteins in the blood-to-brain or the brain-to-blood direction. The ability of GI hormones to affect functions of the BBB, as illustrated by the ability of insulin to alter the BBB transport of amino acids and drugs, represents a second mechanism. A third mechanism is the ability of GI hormones to affect the secretion by the BBB of substances that themselves affect feeding and appetite, such as nitric oxide and cytokines. By these and other mechanisms, the BBB regulates communications between the CNS and GI tract.  相似文献   

15.
Summary Pericytes are cells of mesodermal origin which are closely associated with the microvasculature. Despite numerous studies little is known about their function. We have studied the relationship between pericytes and the endothelium in rat myocardial capillaries employing ultrastructural and immunogold techniques. 14% of the subendothelial cell membrane is covered by comparatively small pericytic cell processes. About half of these processes are completely embedded in baseement membrane material, whereas the remaining half forms closer contacts with the endothelium. These contacts are devoid of anti-laminin immunogold label, a marker for basement membranes. A small fraction of these contacts has been identified as tight junctions resembling those seen between endothelial cells in capillaries of the same tissue. The remaining majority of junctions reveals a cleft of approximately 18 nm between the apposed membranes in which a succession of cleft-spanning structures can often bedetected. It was also found that pericytic processes are preferentially located close to interendothelial junctions. We suggest that the high frequency of intimate junctions between pericytes and the endothelium and the preferential localisation near paracellular clefts may have functional significance.  相似文献   

16.
This study deals with the chemical characterization of an extracellular polysaccharide produced by the unicellular red alga Porphyridium sp. The sugar moiety of this polymer is composed of three neutral monosaccharides (Xyl, Glc, and Gal) and one uronic acid (GlcA). Proteins represent 5.5% of the dry weight of the polymer. Uronic degradation of this exopolysaccharide with lithium in ethylenediamine yielded two different oligosaccharides. The absolute configuration of the constitutive monosaccharides was chemically determined and revealed the presence of D-Xyl, D-Glc, D-, and L-Gal. The following oligosaccharide structures were established by NMR spectroscopy: [carbohydrate structure: see text].  相似文献   

17.
The brain vascular endothelium operates as a dynamic regulatory interface to maintain the cell environment of the nervous system. In the vicinity of astrocytes, brain endothelial cells develop characteristic features conferring a strong cellular impermeability which limits the penetration of various compounds. The aim of our study was to determine by differential proteomic analysis the changes occurring in bovine brain capillary endothelial cells (BBCEC) differentiated in co‐culture with astrocytes compared with endothelial cells cultured alone. In order to obtain reproducible and meaningful protein profiles of in vitro blood–brain barrier models, three sample preparation procedures were carried out to provide the first 2‐D comparative proteomic study of BBCEC. Our study highlights advantages and drawbacks of each procedure. The cellular proteins prepared from mechanical scraping of collagen‐seeded BBCEC were strongly contaminated by serum proteins. Enzymatic dissociation of BBCEC by trypsin or collagenase solved this problem. A comparative 2‐DE profile study of collagenase‐harvested BBCEC revealed that cytoskeleton‐related proteins (actin, gelsolin and filamin‐A) show the most significant quantitative changes in the Triton soluble protein fraction from BBCEC that exhibit characteristics closest to the in vivo situation.  相似文献   

18.
The fat body of the adult female stick insect Bacillus rossius was examined ultrastructurally with a view to clarifying the secretory pathway. The absence of lipid storage in the tissue allowed visualization of a polarized distribution of all organelles in the cell cytoplasm. Composite granules were distributed along the baso-apical axis of the cell according to progressive stages of maturation. At their final stage of maturation, these granules possess two distinct compartments, an electron-translucent compartment and a more electron-dense one. The origin of each of the two compartments was traced back to other organelles in the basal cytoplasm of the fat body cell. The differential origin of the two compartments contributing to the composite granules was further investigated by cytochemical analyses. Vitellogenin was detected both in the electrondense compartment of the composite granules and in the Golgi apparatus. The electron-translucent compartment of the composite granules appeared to consist mainly of urate crystals. Such enzyme activities as acid phosphatase, peroxidase and catalase were also detected in this latter compartment. The observations support the interpretation that secretion in the fat body of B. rossius entails fusion of Golgi-derived vesicles with a specialized kind of multivesicular body. While Golgiderived vesicles convey their load of newly synthesized vitellogenin to the electron-dense compartment, the multivesicular body develops the urate crystals of the electron-translucent compartment.  相似文献   

19.
Carnitine is known to accumulate in brain, therefore transport of carnitine through the blood-brain barrier was studied in an in vitro system using bovine brain capillary endothelial cells (BBCEC) grown on filter inserts in a co-culture system with glial cells. Long-term exposure of BBCEC to carnitine resulted in a high accumulation of long-chain acyl carnitines, which decreased dramatically upon removal of carnitine. Kinetic analysis of carnitine accumulation indicated a possibility of functioning of more than one transporter. BBCEC were incubated in the presence of substrates and inhibitors of known carnitine transporters added from either apical or basolateral side. Inhibition by replacement of sodium and expression of OCTN2 (RT-PCR) were in agreement with earlier reports on the functioning of OCTN2 in apical membrane. For the first time, functioning of OCTN2 was demonstrated in the basolateral membrane, as well as functioning in both membranes of a low affinity carnitine transporter B(0,+). Expression of B(0,+) in BBCEC was confirmed by RT-PCR. These results suggest that OCTN2 and B(0,+) could be involved in carnitine transport in both the apical and basolateral membrane.  相似文献   

20.
Summary The development of neuro-muscular junctions between previously dissociated foetal rat spinal cord and somatic muscle has been investigated. The first indications of junction formation, both ultrastructurally and electrophysiologically, were observed after circa 18 days in vitro. The junctions contained numerous vesicles, but no secondary folds were developed even after 6 weeks in culture, and synaptic densities were not well marked. Functional endplates were found, and action potentials, endplate potentials and miniature endplate potentials recorded.The authors wish to thank Mr. D. Fraser, B. Sc., for valued technical help, and Mr. S. Waterman for photographic printing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号