首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Brassinosteroids and their role in response of plants to abiotic stresses   总被引:2,自引:0,他引:2  
Brassinosteroids (BRs) are polyhydroxylated steroidal plant hormones that play pivotal role in the regulation of various plant growth and development processes. BR biosynthetic or signaling mutants clearly indicate that these plant steroids are essential for regulating a variety of physiological processes including cellular expansion and proliferation, vascular differentiation, male fertility, timing senescence, and leaf development. Moreover, BRs regulate the expression of hundreds of genes, affect the activity of numerous metabolic pathways, and help to control overall developmental programs leading to morphogenesis. On the other hand, the potential application of BRs in agriculture to improve growth and yield under various stress conditions including drought, salinity, extreme temperatures, and heavy metal (Cd, Cu, Al, and Ni) toxicity, is of immense significance as these stresses severely hamper the normal metabolism of plants. Keeping in mind the multifaceted role of BRs, an attempt has been made to cover the various aspects mediated by BRs particularly under stress conditions and a possible mechanism of action of BRs has also been suggested.  相似文献   

2.
Brassinosteroid-Mediated Stress Responses   总被引:25,自引:3,他引:22  
Brassinosteroids (BRs) are a group of naturally occurring plant steroidal compounds with wide-ranging biological activity that offer the unique possibility of increasing crop yields through both changing plant metabolism and protecting plants from environmental stresses. In recent years, genetic and biochemical studies have established an essential role for BRs in plant development, and on this basis BRs have been given the stature of a phytohormone. A remarkable feature of BRs is their potential to increase resistance in plants to a wide spectrum of stresses, such as low and high temperatures, drought, high salt, and pathogen attack. Despite this, only a few studies aimed at understanding the mechanism by which BRs promote stress resistance have been undertaken. Studies of the BR signaling pathway and BR gene-regulating properties indicate that there is cross-talk between BRs and other hormones, including those with established roles in plant defense responses such as abscisic acid, jasmonic acid, and ethylene. Recent studies aimed at understanding how BRs modulate stress responses suggest that complex molecular changes underlie BR-induced stress tolerance in plants. Analyses of these changes should generate exciting results in the future and clarify whether the ability of BRs to increase plant resistance to a range of stresses lies in the complex interactions of BRs with other hormones. Future studies should also elucidate if BRI1, an essential component of the BR receptor, directly participates in stress response signaling through interactions with ligands and proteins involved in plant defense responses.  相似文献   

3.
Plant hormones regulate plant growth and development by affecting an array of cellular, physiological, and developmental processes, including, but not limited to, cell division and elongation, stomatal regulation, photosynthesis, transpiration, ion uptake and transport, initiation of leaf, flower and fruit development, and senescence. Environmental factors such as salinity, drought, and extreme temperatures may cause a reduction in plant growth and productivity by altering the endogenous levels of plant hormones, sensitivity to plant hormones, and/or signaling pathways. Molecular and physiological studies have determined that plant hormones and abiotic stresses have interactive effects on a number of basic biochemical and physiological processes, leading to reduced plant growth and development. Various strategies have been considered or employed to maximize plant growth and productivity under environmental stresses such as salt-stress. A fundamental approach is to develop salt-tolerant plants through genetic means. Breeding for salt tolerance, however, is a long-term endeavor with its own complexities and inherent difficulties. The success of this approach depends, among others, on the availability of genetic sources of tolerance and reliable screening techniques, identification and successful transfer of genetic components of tolerance to desired genetic backgrounds, and development of elite breeding lines and cultivars with salt tolerance and other desirable agricultural characteristics. Such extensive processes have delayed development of successful salt-tolerant cultivars in most crop species. An alternative and technically simpler approach is to induce salt tolerance through exogenous application of certain plant growth–regulating compounds. This approach has gained significant interest during the past decade, when a wealth of new knowledge has become available on the beneficial roles of the six classes of plant hormones (auxins, gibberellins, cytokinins, abscisic acid, ethylene, and brassinosteroids) as well as several other plant growth–regulating substances (jasmonates, salicylates, polyamines, triacontanol, ascorbic acid, and tocopherols) on plant stress tolerance. Among these, brassinosteroids (BRs) and salicylic acid (SA) have been studied most extensively. Both BRs and SA are ubiquitous in the plant kingdom, affecting plant growth and development in many different ways, and are known to improve plant stress tolerance. In this article, we review and discuss the current knowledge and possible applications of BRs and SA that could be used to mitigate the harmful effects of salt-stress in plants. We also discuss the roles of exogenous applications of BRs and SA in the regulation of various biochemical and physiological processes leading to improved salt tolerance in plants.  相似文献   

4.
5.
Brassinosteroids (BRs) are an important group of plant steroidal hormones that are actively involved in a myriad of key growth and developmental processes from germination to senescence. Moreover, BRs are known for their effective role in alleviation of stress-induced changes in normal metabolism via the activation of different tolerance mechanisms. Efforts to improve plant growth through exogenous application of BRs (through different modes such as foliar spray, presowing seed treatment, or through root growing medium) have gained considerable ground world over. It has been widely demonstrated that the exogenous application of BRs to stressed plants imparts the stress tolerance mechanisms. In BR-induced regulation of physio-biochemical processes in plants, interaction (crosstalk) of BRs with other phytohormones has been reported. This crosstalk may fine-tune the effective roles of other hormones in regulating stress tolerance. The multifaceted role of BRs consolidated so far has reflected their immense potential to help plants in counteracting the stress-induced changes. The effects of introgression and up- and down-regulation of BR-related genes reported so far to improve crop productivity have been presented here. Strong evidence exists that BRs are involved in signal transduction particularly in the regulation of the mitogen-activated protein kinase (MAPK) cascade, which in turn is involved in controlled development, cell death, and the perception of pathogen-associated molecular pattern (PAMP) signaling. How far BRs are involved in signal transduction pathways operative under stressful environments has also been comprehensively discussed in this review.  相似文献   

6.
植物激素是由植物自身代谢产生的一类从产生部位移动到作用部位发挥调控功能的微量小分子有机物质,在植物生长发育、响应环境胁迫过程中起到关键作用.苔藓植物作为早期登陆的非维管植物,处于陆生植物进化早期的阶段,具有许多不同于维管植物的形态和生理特征.大部分苔藓中普遍存在8种主要的植物激素及其衍生物(包括ABA、JA、ET、SA...  相似文献   

7.
Brassinosteroids (BRs) comprise a group of polyhydroxysteroids, which show close structural similarity to steroid hormones from arthropods and mammals. BRs are now accepted as a new class of phytohormones due to their ubiquitous occurrence in plants, their highly effective elicitation of various responses and the identification of mutants defective in BR-biosynthesis or -response. Important steps of BR-biosynthesis were elucidated with precursor-feeding experiments and by the analysis of BR-biosynthesis-deficient mutants. The altered phenotypes of these mutants, particularly in Arabidopsis, revealed the essential nature of BRs for normal growth and development. A major role of BRs is the positive regulation of cell expansion. Furthermore, BRs modulate plant responses to biotic and abiotic stresses and to other phytohormones, and influence differentiation processes of cells and tissues. BR-insensitive mutants such as bri1 hold the potential for uncovering BR-signalling pathway(s) at the molecular level. The identification of BR-regulated genes demonstrates a genetic basis for BR mode of action with reference to their multiple effects. This review focuses on the relevance of BRs to the control of various physiological processes, BR-signalling and underlying molecular mechanisms by considering known mutants.  相似文献   

8.
Microarray analysis of brassinosteroid-regulated genes in Arabidopsis   总被引:14,自引:0,他引:14  
  相似文献   

9.
Brassinosteroids (BRs) are growth-promoting steroid hormones that regulate diverse physiological processes in plants. Most BR biosynthetic enzymes belong to the cytochrome P450 (CYP) family. The gene encoding the ultimate step of BR biosynthesis in Arabidopsis likely evolved by gene duplication followed by functional specialization in a dicotyledonous plant-specific manner. To gain insight into the evolution of BRs, we performed a genomic reconstitution of Arabidopsis BR biosynthetic genes in an ancestral vascular plant, the lycophyte Selaginella moellendorffii. Selaginella contains four members of the CYP90 family that cluster together in the CYP85 clan. Similar to known BR biosynthetic genes, the Selaginella CYP90s exhibit eight or ten exons and Selaginella produces a putative BR biosynthetic intermediate. Therefore, we hypothesized that Selaginella CYP90 genes encode BR biosynthetic enzymes. In contrast to typical CYPs in Arabidopsis, Selaginella CYP90E2 and CYP90F1 do not possess amino-terminal signal peptides, suggesting that they do not localize to the endoplasmic reticulum. In addition, one of the three putative CYP reductases (CPRs) that is required for CYP enzyme function co-localized with CYP90E2 and CYP90F1. Treatments with a BR biosynthetic inhibitor, propiconazole, and epi-brassinolide resulted in greatly retarded and increased growth, respectively. This suggests that BRs promote growth in Selaginella, as they do in Arabidopsis. However, BR signaling occurs through different pathways than in Arabidopsis. A sequence homologous to the Arabidopsis BR receptor BRI1 was absent in Selaginella, but downstream components, including BIN2, BSU1, and BZR1, were present. Thus, the mechanism that initiates BR signaling in Selaginella seems to differ from that in Arabidopsis. Our findings suggest that the basic physiological roles of BRs as growth-promoting hormones are conserved in both lycophytes and Arabidopsis; however, different BR molecules and BRI1-based membrane receptor complexes evolved in these plants.  相似文献   

10.
植物生长发育是一个复杂、精细的调控过程,涉及细胞、组织和器官间多层次的信息交流,激素在其间发挥了重要调控作用.生长素和油菜素甾醇(BR)都能促进植物伸长,随着对其作用机制研究的深入,人们发现它们协同调控很多生理过程,对二者作用机制和信号转导的相互作用研究也成为激素研究领域的热点之一.对生长素和BR转导途径的揭示及直接下游基因的大规模发掘为二者通过相互作用调控不同生理过程的机制研究提供了重要线索.生长素和BR的相互作用涉及到下游基因转录的调控、信号组分互作以及合成代谢和极性运输等多层次的调控.  相似文献   

11.
12.
Brassinosteroids (BRs) are steroid plant hormones that are essential for many plant growth and developmental processes, including cell expansion, vascular differentiation and stress responses. Up to now the inhibitory effects of BRs on cell division of mammalian cells are unknown. To determine basic anticancer structure-activity relationships of natural BRs on human cells, several normal and cancer cell lines have been used. Several of the tested BRs were found to have high cytotoxic activity. Therefore, in our next series of experiments, we tested the effects of the most promising and readily available BR analogues with interesting anticancer properties, 28-homocastasterone (1) and 24-epibrassinolide (2), on the viability, proliferation, and cycling of hormone-sensitive/insensitive (MCF-7/MDA-MB-468) breast and (LNCaP/DU-145) prostate cancer cell lines to determine whether the discovered cytotoxic activity of BRs could be, at least partially, related to brassinosteroid-nuclear receptor interactions. Both BRs inhibited cell growth in a dose-dependent manner in the cancer cell lines. Flow cytometry analysis showed that BR treatment arrested MCF-7, MDA-MB-468 and LNCaP cells in G(1) phase of the cell cycle and induced apoptosis in MDA-MB-468, LNCaP, and slightly in the DU-145 cells. Our results provide the first evidence that natural BRs can inhibit the growth, at micromolar concentrations, of several human cancer cell lines without affecting the growth of normal cells. Therefore, these plant hormones are promising leads for potential anticancer drugs.  相似文献   

13.
14.
Plants enjoy their entire life exactly where they were initially rooted. Because of this fixed life pattern, plants have to devise a different type of strategy than animals to survive the numerous biotic and abiotic challenges. Many different plant hormones that act alone or in concert underpin these mechanisms. Brassinosteroids (BRs) collectively refer to plant-originated 5μ-cholestane steroids that elicit growth stimulation in nano-or micromolar concentrations. BRs that are biosynthesized using sterols as precursors are structurally similar to the cholesterol derived, mammalian steroid hormones, insect molting hormones and ecdysteroids. BRs have been known for decades to be effective in plant growth promotion. However, definitive evidence for their roles in growth and development remained unclear until the recent characterization of BRdwarf mutants isolated fromArabidopsis and other plants. This review aims to provide a cohesive summary of information obtained from the molecular genetic characterization of mutants that are defective in sterol and BR biosynthetic pathways.  相似文献   

15.
Evaluation of biological activity of new synthetic brassinolide analogs   总被引:1,自引:0,他引:1  
The responses of plants to exogenous treatment with new synthetic brassinosteroids (BRs) were assessed and compared with the activity of natural 24-epibrassinolide (24-EPI). Morphological experiments on plants of pea and flax showed that the boundary between stimulatory and inhibitory concentrations of individual BRs and 24-EPI used is very narrow and differs also with the plant species. Moreover brassinosteroids can exhibit effects similar to various other plant hormones. This was proven also in our experiments, where auxin, anti-auxin and cytokinin like effects were achieved by BRs application. One of the explanations of the different morphological effects could be the influence of brassinosteroid application on the level of endogenous hormones. There are changes in the levels of indole-3-acetic acid, 6-benzylaminopurine, trans-zeatin and dihydrozeatin in rape and wheat plants caused by BR 4 and 24-EPI application, but there is no general trend explaining unequivocally their influence. The fact that all tested BRs significantly increased the dry weight accumulation in comparison with non-treated reference rape plants can be accounted for the known BRs characteristics to avoid biotic stresses.  相似文献   

16.
Brassinosteroids (BRs) induce various growth responses when applied exogenously to plant tissues, and the analysis of biosynthetic mutants reveals an essential role for plant growth and development. Only a few BR-regulated genes have been identified so far, and the corresponding gene products are assumed to be involved in cell elongation. The present study shows that BR growth responses are linked to the regulation of carbohydrate metabolism by induction of the mRNA for the key enzyme of an apoplastic phloem-unloading pathway. Addition of BRs to autotrophic tomato suspension culture cells specifically elevates the activity of cell-wall-bound invertase, whereas the intracellular invertase activities were not affected. This enhanced enzyme activity was shown to correlate with the induction of the mRNA of extracellular invertase Lin6, whereas the mRNA levels of the other three extracellular invertase isoenzymes were not affected. The induction level induced by different BRs correlates with their growth-promoting activity. The physiological significance of this regulation is further supported by the low concentrations and short incubation times required to induce Lin6 mRNA. This regulatory mechanism results in an elevated uptake of sucrose via the hexose monomers, and thus an increased supply of carbohydrates to the BR-treated cells. Experiments with tomato seedlings showed that the localized BR-dependent growth response of the hypocotyl elongation zone was accompanied by a specific induction of Lin6 mRNA that is restricted to the corresponding tissues. This study demonstrates a role of BRs in tissue-specific source/sink regulation.  相似文献   

17.
To withstand ever-changing environmental stresses, plants are equipped with phytohormone-mediated stress resistance mechanisms. Salt stress triggers abscisic acid (ABA) signaling, which enhances stress tolerance at the expense of growth. ABA is thought to inhibit the action of growth-promoting hormones, including brassinosteroids (BRs). However, the regulatory mechanisms that coordinate ABA and BR activity remain to be discovered. We noticed that ABA-treated seedlings exhibited small, round leaves and short roots, a phenotype that is characteristic of the BR signaling mutant, brassinosteroid insensitive1-9 (bri1-9). To identify genes that are antagonistically regulated by ABA and BRs, we examined published Arabidopsis microarray data sets. Of the list of genes identified, those upregulated by ABA but downregulated by BRs were enriched with a BRRE motif in their promoter sequences. After validating the microarray data using quantitative RT-PCR, we focused on RD26, which is induced by salt stress. Histochemical analysis of transgenic Arabidopsis plants expressing RD26pro:GUS revealed that the induction of GUS expression after NaCl treatment was suppressed by co-treatment with BRs, but enhanced by co-treatment with propiconazole, a BR biosynthetic inhibitor. Similarly, treatment with bikinin, an inhibitor of BIN2 kinase, not only inhibited RD26 expression, but also reduced the survival rate of the plant following exposure to salt stress. Our results suggest that ABA and BRs act antagonistically on their target genes at or after the BIN2 step in BR signaling pathways, and suggest a mechanism by which plants fine-tune their growth, particularly when stress responses and growth compete for resources.  相似文献   

18.
Brassinosteroids (BRs) are the polyhydroxylated plant hormones sharing a common resemblance with animal steroids. They are active even at very low concentrations and are implicated for their pleiotropic involvement in diverse physiological processes and defense strategies during stress in plants. These compounds are well apparent in the plant kingdom with higher amounts in juvenile tissues. A total of 62 steroidal compounds have been identified so far. Keeping their significance in mind, researchers not only have worked extensively on their isolation, but also they were synthesizing their synthetic isomers. Different analytical techniques like HPLC, GC-MS, LC-MS/MS, UPLC-MS/MS, and bioassay-based methods have been used for their isolation, detection, and characterization from composite plant materials. Therefore, this review provides comprehensive information to the readers intending to isolate and characterize BRs, using either laborious techniques or modern-day more efficient methods.  相似文献   

19.
Brassinosteroids (BRs) are a class of polyhydroxylated steroidal phytohormones in plants with similar structures to animals’ steroid hormones. Brassinosteroids regulate a wide range of physiological processes including plant growth, development and immunity. Brassinosteroid signalling and its integration with other signalling pathways have been investigated thoroughly at the molecular level.  相似文献   

20.
油菜素甾醇(BR)作为植物内源激素, 广泛参与植物的生长发育过程及逆境应答。虽然BR调控生长发育的分子机制目前已相对清楚, 但在水稻(Oryza sativa)中, BR在逆境反应中的功能还鲜有报道。该研究系统分析了BR在高盐胁迫过程中的作用, 表明盐胁迫和逆境激素脱落酸可抑制BR合成基因D2D11的表达, 典型的BR缺陷突变体(如d2-2d61-1)则表现出对盐胁迫敏感性增强。此外, 通过对BR核心转录因子OsBZR1的过表达株系进行分析, 发现BR可显著诱导OsBZR1的去磷酸化, 盐胁迫对OsBZR1蛋白的积累水平和磷酸化状态均有调控作用。转录组数据分析表明, BR处理前后差异表达基因中有38.4%同时受到盐胁迫调控, 其中91.5%受到BR和高盐一致调控, 并显著富集在应激反应过程中。研究结果表明, BR正调控水稻的耐盐性, 而盐胁迫通过抑制BR合成来限制水稻的生长。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号