首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
A concentration dependent increase in lipid peroxidation, carotenoid content and activity of superoxide dismutase was observed in the green microalga Chlorella vulgaris following copper exposure. In contrast, activities of catalase, ascorbate peroxidase and glutathione reductase, and the cellular GSH, ascorbate and K+ pool depicted a reverse trend. However, a significant rise in intracellular proline content was also evident in copper supplemented cultures. Though this study depicted the malfunction of the major antioxidant system of C. vulgaris under copper stress the test organism was found to survive and grow even at 3.0 microg mL(-1) of Cu treatment (32% growth). Further study is needed to establish the role of proline in metal toxicity regulation.  相似文献   

4.
The effect of saline irrigation (ECiw 6 dS m?1 and 9 dS m?1) on the roots of Cicer arietinum L. genotypes was examined at morpho-physiological, biochemical and molecular levels. Reduction in root growth due to salinity was observed, but less effect was seen on the roots of genotypes KWR 108, ICCV 10, CSG 8962, and S7 as compared to the other genotypes. Cell turgor was maintained in tolerant genotypes through optimum water relations and osmoprotectants (proline and total soluble sugars) than the sensitive cultivars. Salinity caused oxidative stress as increased hydrogen peroxide and malondialdehyde were noticed, where low accumulation was observed in tolerant genotypes due to the higher activity of enzymatic antioxidants (superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase and peroxidase). Na+/K+ ratio increased, but more increment was reported in sensitive cultivars. Gene expression studies depicted that genes encoding pyrroline-5-carboxylate synthetase and pyrroline-5-carboxylate reductase got upregulated and that of proline dehydrogenase was downregulated and more fold change with respect to control was in the salt tolerant check CSG 8962 and the genotype KWR 108. Higher expression of the genes encoding reactive oxygen species scavenging enzymes namely, superoxide dismutase, catalase, peroxidase, and those involved in the ascorbate–glutathione cycle was noticed in KWR 108 and CSG 8962 than ICC 4463. Enhanced expression of sodium transporter HKT1 due to salinity can be correlated with ion homeostasis maintenance. Cumulative effects of osmolytes, enzymatic antioxidants and maintaining ion homeostasis in root enable chickpea plants to survive in saline environments.  相似文献   

5.
6.
The activities of superoxide dismutase, ascorbate peroxidase, monodehydroascorbate radical reductase, and dehydroascorbate reductase and the contents of ascorbate, chlorophyll and soluble protein were determined in beech (Fagus sylvatica, L.) foliage over two or three seasons. Four important stages of leaf development were distinguished: resting buds, emerging, mature and senescent leaves. Foliar buds in spring, prior to the emergence of new leaves, contained a lower chlorophyll content but a higher protein content and higher activities of ascorbate peroxidase and monodehydroascorbate radical reductase than mature leaves in summer. By contrast, superoxide dismutase and glutathione reductase activities and ascorbate contents were higher in mature leaves than in swollen foliar buds. Dehydroascorbate reductase activity was low in all developmental stages. Resting buds in winter contained activities of superoxide dismutase, ascorbate peroxidase and monodehydroascorbate radical reductase that were similar to those found in mature leaves in summer, whereas the contents of total and reduced ascorbate were 6- and 20-times lower, respectively, in buds than in mature leaves. The low foliar concentration of reduced ascorbate in resting buds, despite high monodehydroascorbate radical reductase activity, suggests that the regeneration of ascorbate might be limited by the availability of reductant. High antioxidative capacity was conferred by mature beech leaves and may be an important protection measure for coping with the large fluctuations in temperature and exposure to elevated ozone concentrations in summer.  相似文献   

7.
Role of lipid peroxidation and antioxidative enzymes (catalase, peroxidase, superoxide dismutase, ascorbate peroxidase and glutathione reductase) in water stress-promoted senescence of detached rice leaves was investigated. The senescence was followed by measuring the decrease in protein content. Increased lipid peroxidation was closely correlated with senescence in water stressed leaves. Decrease in superoxide dismutase activity was evident 8 h after beginning of water stress. However, decreased catalase, peroxidase, and ascorbate peroxidase activity was observed only when senescence was observed. Glutathione reductase was not affected by water stress. Free radical scavengers retarded water stress-enhanced senescence.  相似文献   

8.
Changes in growth, physiological and biochemical characteristics under salt stress with or without La3+ treatment in Saussurea involucrata Kar. et Kir. were investigated. The results showed that La3+ relieved the plant growth inhibition, improved the leaf water potential and water content, increased the soluble protein and the proline contents and decreased malondialdehyde content under salt stress. Further, addition of La3+ significantly increased the activities of superoxide dismutase, ascorbate peroxidase, catalase, and glutathione reductase, decreased the photosynthetic pigment decomposition and increased the ratio of total chlorophyll to carotenoids under salt stress.  相似文献   

9.
The different physiological responses to heat stress in calli from two ecotypes of common reed (Phragmites communis Trin.) plants (dune reed (DR) and swamp reed (SR)) were studied. The relative water content, the relative growth rate, cell viability, membrane permeability (MP), H2O2 content, MDA content, proline level, and the activities of enzymes, such as superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), glutathione reductase (GR), and lipoxygenase (LOX) were assayed. Results showed that under heat stress, DR callus could maintain the higher relative growth rate and cell viability than SR callus, while H2O2 content, MDA content, and MP in SR callus increased more than in DR callus. The activities of antioxidant enzymes, such as SOD, CAT, POD, APX, and GR in two calli were enhanced by high temperature. However, antioxidant enzymes in DR callus showed the higher thermal stability than those in SR callus. LOX activity increased more in SR callus than in DR callus under heat stress. High temperature markedly elevated proline content in DR callus whereas had no effect on that in SR callus. Taken together, DR callus is more thermotolerant than SR callus, which might be due to the higher activity of antioxidant enzymes and proline level compared with SR callus under heat stress.  相似文献   

10.
A number of studies have established that plant growth and development in oilseed rape (Brassica napus L.) are hampered by salinity stress. Nowadays, researchers have focused on the use of plant growth regulators to increase plant tolerance against salinity. An experiment was performed to evaluate the effects of 5-aminolevulinic acid (ALA, 30 mg l?1) on Brassica napus L. (cv. ??ZS 758??) plants under NaCl (100, 200 mM) salinity. Data presented here were recorded on two different leaf positions (first and third) to have a better understanding of the ameliorative role of ALA on NaCl-stressed oilseed rape plants. Results have shown that increasing salinity imposed negative impact on relative growth rate (root and shoot) and leaf water relations (osmotic potential and relative water content), whereas enhanced the level of relative conductivity, malondialdehyde (MDA) content, osmolytes (soluble sugar, soluble protein, free amino acid and proline) concentration, reactive oxygen species (ROS), and enzymatic (ascorbate peroxidase, guaiacol peroxidase, catalase and superoxide dismutase) and non-enzymatic (reduced glutathione and ascorbate) antioxidants activity in two different leaf position samples. Foliar application of ALA improved relative growth rate (root and shoot) and leaf water relations (osmotic potential and relative water content), and also triggered the further accumulation of osmolytes (soluble sugar, soluble protein, free amino acid and proline) as well as enzymatic (ascorbate peroxidase, guaiacol peroxidase, catalase and superoxide dismutase) and non-enzymatic (reduced glutathione and ascorbate) antioxidants activity in both leaf samples, whereas decreased the membrane permeability, MDA content and ROS production. Our results also indicate that osmolytes are preferentially accumulated in younger tissues.  相似文献   

11.
The plants of pigeonpea (Cajanus cajan L.) cv. H77-216 were subjected to moderate [soil moisture content (SMC) = 7.3 ± 0.5 %] and severe (SMC = 4.3 ± 0.5 %) drought by withholding the irrigation at vegetative stage (45 d after sowing). The control plants were maintained at SMC of 11.0 ± 0.5 %. Half of the stressed plants were re-irrigated and their recovery was studied after 2 d. Leaf water potential, osmotic potential, and relative water content of leaf and root decreased significantly while a sharp rise in proline and total soluble sugars contents were noticed. Drought induced a significant increase in 1-aminocyclopropane 1-carboxylic acid (ACC) content and ACC oxidase activity which caused a considerable increase in ethylene evolution. Malondialdehyde content and relative stress injury were increased under drought whereas reverse was true for ascorbic acid content. The membrane integrity of roots decreased during stress and recovered on rehydration. The specific activity of total superoxide dismutase, ascorbate peroxidase, glutathione reductase, and glutathione transferase decreased to 37 – 78 %, 17 – 62 %, 29 – 36 % and 57 – 79 % at moderate and severe drought, respectively. The increase in activity of catalase and peroxidase could not overcome the accumulation of H2O2 content in the roots.  相似文献   

12.
The physiological effects of lanthanum(III) ions on the ferritin-regulated antioxidant process were studied in wheat (Triticum aestivum L.) seedlings under polyethylene glycol (PEG) stress. Treatment with 0.1 mM La3+ resulted in increased levels of chlorophyll, carotenoid, proline, ascorbate, and reduced glutathione. The activities of superoxide dismutase, catalase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase, and peroxidase were also increased after La3+ treatment. Treatment with La3+ seems to enhance the capacity of the reactive oxygen species scavenging system, affect the Fe2+ and Fe3+ electron-transfer process in ferritin, and restrain the formation of hydroxyl radical (OH.), alleviating the oxidative damage induced by PEG stress.  相似文献   

13.
以当地辣椒(Capsicum annuum L.)主栽品种'陇椒5号'和'七寸红'幼苗为试材,分析了不同浓度的外源谷胱甘肽(GSH)对辣椒叶浸提液处理下辣椒幼苗叶片活性氧清除系统的影响,以探讨外源GSH对辣椒自毒作用的缓解效应及其机制.结果表明:辣椒叶浸提液处理后,两品种辣椒幼苗叶片的SOD、POD、APX 活性及AsA含量均显著下降,GR活性和GSH含量先升高后降低,MDA含量显著升高,且处理时间越长变化幅度越大.在叶浸提液自毒作用下,浓度为 30和50 mg·L-1的GSH可明显提高叶片活性氧清除系统中SOD、POD、APX和GR的活性及GSH、AsA的含量,显著降低MDA的含量.研究发现,辣椒叶浸提液能对辣椒幼苗产生自毒作用,外源GSH能诱导辣椒体内保护酶系统和抗氧化物质活性增强,有效降低细胞的膜脂过氧化水平,对辣椒的自毒作用有一定的缓解效应;'陇椒5号'和'七寸红'分别在30和50 mg·L-1 GSH时缓解效果最为明显.  相似文献   

14.

The role of ethylene (through application of ethephon) in the regulation of nickel (Ni) stress tolerance was investigated in this study. Ethephon at concentration of 200 µl l?1 was applied to mustard (Brassica juncea) plants grown without and with 200 mg kg?1 soil Ni to study the increased growth traits, biochemical attributes, photosynthetic efficiency, nutrients content, activities of antioxidants such as superoxide dismutase, ascorbate peroxidase, glutathione reductase, and glutathione peroxidase, glyoxalase systems and enhanced the proline metabolism. In the absence of ethephon, Ni increased oxidative stress with a concomitant decrease in photosynthesis, growth and nutrients content. However, application of ethephon positively increased growth traits, photosynthetic parameters, nutrients content and also elevated the generation of antioxidants enzymes and glyoxalase systems, proline production to combat oxidative stress. Plants water relations and cellular homeostasis were maintained through increased photosynthetic efficiency and proline production. This signifies the role of ethylene in mediating Ni tolerance via regulating proline production and photosynthetic capacity. Ethephon can be used as an exogenous supplement on plants to confer Ni tolerance. The results can be exploited to develop tolerance in plants via gene editing technology encoding enzymes responsible for proline synthesis, antioxidant defence, glyoxalase systems and photosynthetic effectiveness.

  相似文献   

15.
Antioxidant defences of the apoplast   总被引:1,自引:0,他引:1  
Summary The apoplast of barley and oat leaves contained superoxide dismutase (SOD), catalase, ascorbate peroxidase, dehydroascorbate reductase, monodehydroascorbate reductase, and glutathione reductase activities. The activities of these enzymes in the apoplastic extracts were greatly modified 24 h after inoculation with the biotrophic fungal pathogenBlumeria graminis. The quantum efficiency of photosystem II, which is related to photosynthetic electron transport flux, was comparable in inoculated and healthy leaves during this period. Apoplastic soluble acid invertase activity was also modified in inoculated leaves. Inoculation-dependent increases in apoplastic SOD activity were observed in all lines. Major bands of SOD activity, observed in apoplastic protein extracts by activity staining of gels following isoelectric focusing, were similar to those observed in whole leaves but two additional minor bands were found in the apoplastic fraction. The apoplastic extracts contained substantial amounts of dehydroascorbate (DHA) but little or no glutathione (GSH). Biotic stress decreased apoplastic ascorbate and DHA but increased apoplastic GSH in resistant lines. The antioxidant cycle enzymes may function to remove apoplastic H2O2 with ascorbate and GSH derived from the cytoplasm. DHA and oxidized glutathione may be reduced in the apoplast or returned to the cytosol for rereduction.Abbreviations AA reduced ascorbate - APX ascorbate peroxidase - DHA dehydroascorbate (oxidised ascorbate) - DHAR dehydroascorbate reductase - G6PDH glucose-6-phosphate dehydrogenase - GSH reduced glutathione - GSSG glutathione disulphide - GR glutathione reductase - MDHA monodehydroascorbate - MDHAR monodehydroascorbate reductase - SOD superoxide dismutase  相似文献   

16.
王红霞  胡金朝  施国新  杨海燕  李阳  赵娟  许晔 《生态学报》2010,30(10):2784-2792
采用营养液水培的方法,研究了外源亚精胺(Spd)和精胺(Spm)对Cu胁迫下水鳖叶片3种形态多胺(PAs)、抗氧化系统及营养元素的影响。结果表明:(1)Cu胁迫使水鳖叶片腐胺(Put)急剧积累,Spd和Spm明显下降,从而使(Spd+Spm)/Put比值也随之下降。外源Spd和Spm显著或极显著逆转Cu诱导的PAs变化,抑制Put的积累,缓解Spd和Spm的下降,从而提高了(Spd+Spm)/Put比值。(2)外源Spd和Spm抑制了Cu胁迫诱导的多胺氧化酶(PAO)的增加,缓解了二胺氧化酶(DAO)的下降。(3)与单一Cu胁迫相比,Spd和Spm显著或极显著提高了超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)和谷胱甘肽还原酶(GR)活性和抗坏血酸(AsA)、谷胱甘肽(GSH)、游离脯氨酸(Pro)含量,从而降低了超氧阴离子(O2.-)产生速率和过氧化氢(H2O2)含量,极显著降低了丙二醛(MDA)含量,缓解了Cu诱导的氧化胁迫。(4)外源Spd和Spm显著或极显著缓解了Cu胁迫下矿质营养元素吸收平衡的紊乱。以上结果均说明了外施Spd和Spm可增加水鳖对Cu胁迫的耐受性。  相似文献   

17.
The effects of 24-epibrassinolide (24-epiBL) on seedling growth, antioxidative system, lipid peroxidation, proline and soluble protein content were investigated in seedlings of the salt-sensitive rice cultivar IR-28. Seedling growth of rice plants was improved by 24-epiBL treatment under salt stress conditions. When seedlings treated with 24-epiBL were subjected to 120 mM NaCl stress, the activities of superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6) and glutathione reductase (EC 1.6.4.2) did not show significant difference, whereas the activity of ascorbate peroxidase (EC 1.11.1.11) significantly increased. Increased activity of peroxidase (EC 1.11.1.7) under NaCl stress showed remarkable decrease in the 24-epiBL+NaCl-applied group. Lipid peroxidation level significantly increased under salt stress but decreased with 24-epiBL application revealing that less oxidative damage occurred in this group (24-epiBL+NaCl). In addition, increased proline content in the NaCl-applied group was decreased by 24-epiBL application in the 24-epiBL+NaCl-applied group. Soluble protein content was increased by 24-epiBL application even under NaCl stress, being also higher than control conditions (no 24-epiBL or NaCl treatment). 24-epiBL treatment considerably alleviated oxidative damage that occurred under NaCl-stressed conditions and improved seedling growth in part under salt stress in sensitive IR-28 seedlings.  相似文献   

18.
Water stress is one of the main abiotic factors that reduces plant growth, mainly due to high evaporative demand and low water availability. In order to evaluate the effects of drought stress on certain morphological and physiological characteristics of two canola cultivars, we conducted a factorial experiment based on a completely randomized design. The findings show that drought stress exacerbations result in the plant's response to stress due to increased canola resistance caused by changes in plant pigments, proline, catalase, ascorbate peroxidase, peroxidase, superoxide dismutase and malondialdehyde, glucose, galactose, rhamnose and xylose. These in turn ultimately influence the morphological characteristics of canola. Drought stress reduces the concentration of carotenoids, chlorophyll a, chlorophyll b, total chlorophylls; however, glucose, galactose, rhamnose, xylose, proline, catalase, ascorbate peroxidase, peroxidase, superoxide dismutase, malondialdehyde (in leaves and roots) and the chlorophyll a and b ratios were increased. Reduction of plant height, stem height, root length, fresh and dry weight of canola treated with 300 g/l PEG compared to non‐treatment were 0.264, 0.236, 0.394, 0.183 and 0.395, respectively. From the two canola cultivars, the morphological characteristics of the NIMA increased compared to the Ks7 cultivar. Interaction effects of cultivar and drought stress showed that NIMA cultivar without treatment had the highest number of morphological characteristics such as carotenoid concentration, chlorophyll a, chlorophyll b, total chlorophylls a and b, whereas the cultivar with 300 g/l PEG (drought stress) had the highest amount of proline, malondialdehyde, soluble sugars and enzymes in leaves and roots. Increasing activity of oxidative enzymes and soluble sugars in canola under drought stress could be a sign of their relative tolerance to drought stress.  相似文献   

19.
Extremes of temperature (both heat and chilling) during early inbibitional phase of germination caused disruption of redox-homeostasis by increasing accumulation of reactive oxygen species (superoxide and hydrogen peroxide) and significant reduction of antioxidative defense (assessed in terms of total thiol content and activities of superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase) in germinating tissues of rice (Oryza sativa L., cultivar Ratna). Imbibitional heat and chilling stress also induced oxidative damage to newly assembled membrane system by aggravating membrane lipid peroxidation and protein oxidation [measured in terms of thiobarbituric acid reactive substances (TBARS), free carbonyl content (C = O groups) and membrane protein thiol level (MPTL)]. Treatment with standardized low titer hydrogen peroxide during early imbibitional phase of germination caused significant reversal in oxidative damages to the newly assembled membrane system imposed by heat and chilling stress [evident from the data of TBARS, C = O, MPTL, ROS accumulation, membrane permeability status, membrane injury index and oxidative stress index] in seedlings of experimental rice cultivar. Imbibitional H2O2 pretreatment also caused up-regulation of antioxidative defense (activities of superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase and total thiol content) in the heat and chilling stress-raised rice seedlings. When the parameters of early growth performances were assessed (in terms of relative growth index, biomass accumulation, relative germination performance, mean daily germination, T50 value), it clearly exhibited significant improvement of early growth performances of the experimental rice cultivar. The result proposes that an ‘inductive pulse’ of H2O2 is required to switch on some stress acclimatory metabolism through which plant restores redox homeostasis and prevents or repairs oxidative damages to newly assembled membrane system caused by unfavorable environmental cues during early germination to the rice cultivar Ratna. The importance of mitigating oxidative damages to membrane lipid and protein necessary for post-germinative growth under extremes of temperature is also suggested.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号