首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A crucial prerequisite for plant growth and survival under high salinity is maintenance of Na+ and K+ balance. Accumulation of Na+ and K+ in high concentration in the cytosol reduces crop yield. To cope with such imbalance ionic conditions, plants use a number of transporters to maintain Na+ and K+ homoeostasis inside the cell and regulate plant growth and development. This cation and pH homoeostasis is regulated by monovalent cation/proton antiporters (CPA) that fall in two categories, the CPA1 family that includes Na+/H+ NHX antiporters, and the CPA2 family that includes Cation/H+ (CHX) and K+ efflux antiporters (KEA). In this review we highlighted the role of NHX-antiporters in regulation of Na+ and K+ balance. NHX proteins are required for accurate K+ compartmentation. They mediate K+ specific vacuolar sequestration, pH adjustment, turgor and osmotic regulation, and play a unique role in stomatal movement and cell expansion.  相似文献   

2.
The cation/proton antiporter superfamily is associated with the transport of monovalent cations across membranes. This superfamily was annotated in the Arabidopsis genome and some members were functionally characterized. In the present study, a systematic analysis of the cation/proton antiporter genes in diverse plant species was reported. We identified 240 cation/proton antiporters in alga, moss, and angiosperm. A phylogenetic tree was constructed showing these 240 members are separated into three families, i.e., Na+/H+ exchangers, K+ efflux antiporters, and cation/H+ exchangers. Our analysis revealed that tandem and/or segmental duplications contribute to the expansion of cation/H+ exchangers in the examined angiosperm species. Sliding window analysis of the nonsynonymous/synonymous substitution ratios showed some differences in the evolutionary fate of cation/proton antiporter paralogs. Furthermore, we identified over-represented motifs among these 240 proteins and found most motifs are family specific, demonstrating diverse evolution of the cation/proton antiporters among three families. In addition, we investigated the co-expressed genes of the cation/proton antiporters in Arabidopsis thaliana. The results showed some biological processes are enriched in the co-expressed genes, suggesting the cation/proton antiporters may be involved in these biological processes. Taken together, this study furthers our knowledge on cation/proton antiporters in plants.  相似文献   

3.
4.
《Genomics》2021,113(4):1940-1951
Na+, K+ and pH homeostasis are important for plant life and they are controlled by the monovalent cation proton antiporter (CPA) superfamily. The roles of ZmCPAs in salt tolerance are not fully elucidated. In this study, we identified 35 ZmCPAs comprising 13 Na+/H+ exchangers (ZmNHXs), 16 cation/H+ exchanger (ZmCHXs), and 6 K+ efflux antiporters (ZmKEAs). All ZmCPAs have transmembrane domains and most of them were localized to plasma membrane or tonoplast. ZmCHXs were specifically highly expressed in anthers, while ZmNHXs and ZmKEAs showed high expression in various tissues. ZmNHX5 and ZmKEA2 were up-regulated in maize seedlings under both NaCl and KCl stresses. Yeast complementation experiments revealed the roles of ZmNHX5, ZmKEA2 in NaCl tolerance. Analysis of the maize mutants further validated the salt tolerance functions of ZmNHX5 and ZmKEA2. Our study highlights comprehensive information of ZmCPAs and provides new gene targets for salt tolerance maize breeding.  相似文献   

5.
Cation transport is thought to be an important process for ion homeostasis in plant cells. Here, we report that a soybean putative cation/proton antiporter GmCAX1 may be a mediator of this process. GmCAX1 is expressed in all tissues of the soybean plants but at a lower level in roots. Its expression was induced by PEG, ABA, Ca2+, Na+ and Li+ treatments. The GmCAX1-GFP fusion protein was mainly localized in plasma membrane of the transgenic Arabidopsis plant cells and onion epidermal cells. Transgenic Arabidopsis plants overexpressing GmCAX1 accumulated less Na+, K+, and Li+, and were more tolerant to elevated Li+ and Na+ levels during germination when compared with the controls. These results suggest that GmCAX1 may function as an antiporter for Na+, K+ and Li+. Modulation of this antiporter may be beneficial for regulation of ion homeostasis and thus plant salt tolerance.  相似文献   

6.
Cation/proton antiporter 1 (CPA1) genes encode cellular Na+/H+ exchanger proteins, which act to adjust ionic balance. Overexpression of CPA1s can improve plant performance under salt stress. However, the diversified roles of the CPA1 family and the various parameters used in evaluating transgenic plants over‐expressing CPA1s make it challenging to assess the complex functions of CPA1s and their physiological mechanisms in salt tolerance. Using meta‐analysis, we determined how overexpression of CPA1s has influenced several plant characteristics involved in response and resilience to NaCl stress. We also evaluated experimental variables that favour or reduce CPA1 effects in transgenic plants. Viewed across studies, overexpression of CPA1s has increased the magnitude of 10 of the 19 plant characteristics examined, by 25% or more. Among the ten moderating variables, several had substantial impacts on the extent of CPA1 influence: type of culture media, donor and recipient type and genus, and gene family. Genes from monocotyledonous plants stimulated root K+, root K+/Na+, total chlorophyll, total dry weight and root length much more than genes from dicotyledonous species. Genes transformed to or from Arabidopsis have led to smaller CPA1‐induced increases in plant characteristics than genes transferred to or from other genera. Heterogeneous expression of CPA1s led to greater increases in leaf chlorophyll and root length than homologous expression. These findings should help guide future investigations into the function of CPA1s in plant salt tolerance and the use of genetic engineering for breeding of resistance.  相似文献   

7.
The cation/H+ exchange is a basic process in transmembrane transport. The acquisition of genome sequences has now established that plants possess genes encoding a large number of cation/proton antiporter 1 (CPA1) proteins, few of which have been characterized with respect to their contribution to ion homeostasis. The CPA1s comprise plasma membrane, vacuolar, and endosomal forms, and they have been identified as important for a salinity tolerance. They are, however, also involved in both the control of cellular pH and K+ homeostasis, and regulate processes over a wide range of physiological events, from vesicle trafficking to development.  相似文献   

8.
AtNHX4 belongs to the monovalent cation:proton antiporter-1 (CPA1) family in Arabidopsis. Several members of this family have been shown to be critical for plant responses to abiotic stress, but little is known on the biological functions of AtNHX4. Here, we provide the evidence that AtNHX4 plays important roles in Arabidopsis responses to salt stress. Expression of AtNHX4 was responsive to salt stress and abscisic acid. Experiments with CFP-AtNHX4 fusion protein indicated that AtNHX4 is vacuolar localized. The nhx4 mutant showed enhanced tolerance to salt stress, and lower Na+ content under high NaCl stress compared with wild-type plants. Furthermore, heterologous expression of AtNHX4 in Escherichia coli BL21 rendered the transformants hypersensitive to NaCl. Deletion of the hydrophilic C-terminus of AtNHX4 dramatically increased the hypersensitivity of transformants, indicating that AtNHX4 may function in Na+ homeostasis in plant cell, and its C-terminus plays a role in regulating the AtNHX4 activity.  相似文献   

9.
Shabala S  Cuin TA  Prismall L  Nemchinov LG 《Planta》2007,227(1):189-197
Apoptosis, one form of programmed cell death (PCD), plays an important role in mediating plant adaptive responses to the environment. Recent studies suggest that expression of animal anti-apoptotic genes in transgenic plants may significantly improve a plant’s ability to tolerate a variety of biotic and abiotic stresses. The underlying cellular mechanisms of this process remain unexplored. In this study, we investigated specific ion flux “signatures” in Nicotiana benthamiana plants transiently expressing CED-9 anti-apoptotic gene and undergoing salt- and oxidative stresses. Using a range of electrophysiological techniques, we show that expression of CED-9 increased plant salt and oxidative stress tolerance by altering K+ and H+ flux patterns across the plasma membrane. Our data shows that PVX/CED-9 plants are capable of preventing stress-induced K+ efflux from mesophyll cells, so maintaining intracellular K+ homeostasis. We attribute these effects to the ability of CED-9 to control at least two types of K+-permeable channels; outward-rectifying depolarization-activating K+ channels (KOR) and non-selective cation channels (NSCC). A possible scenario linking CED-9 expression and ionic relations in plant cell is suggested. To the best of our knowledge, this study is the first to link “ion flux signatures” and mechanisms involved in regulation of PCD in plants.  相似文献   

10.
The Saccharomyces cerevisiae Nha1p, a plasma membrane protein belonging to the monovalent cation/proton antiporter family, plays a key role in the salt tolerance and pH regulation of cells. We examined the molecular function of Nha1p by using secretory vesicles isolated from a temperature sensitive secretory mutant, sec4-2, in vitro. The isolated secretory vesicles contained newly synthesized Nha1p en route to the plasma membrane and showed antiporter activity exchanging H+ for monovalent alkali metal cations. An amino acid substitution in Nha1p (D266N, Asp-266 to Asn) almost completely abolished the Na+/H+ but not K+/H+ antiport activity, confirming the validity of this assay system as well as the functional importance of Asp-266, especially for selectivity of substrate cations. Nha1p catalyzes transport of Na+ and K+ with similar affinity (12.7 mM and 12.4 mM), and with lower affinity for Rb+ and Li+. Nha1p activity is associated with a net charge movement across the membrane, transporting more protons per single sodium ion (i.e., electrogenic). This feature is similar to the bacterial Na+/H+ antiporters, whereas other known eukaryotic Na+/H+ antiporters are electroneutral. The ion selectivity and the stoichiometry suggest a unique physiological role of Nha1p which is distinct from that of other known Na+/H+ antiporters.  相似文献   

11.
Multiple transporters and channels mediate cation transport across the plasma membrane and tonoplast to regulate ionic homeostasis in plant cells. However, much less is known about the molecular function of transporters that facilitate cation transport in other organelles such as Golgi. We report here that Arabidopsis KEA4, KEA5, and KEA6, members of cation/proton antiporters‐2 (CPA2) superfamily were colocalized with the known Golgi marker, SYP32‐mCherry. Although single kea4,5,6 mutants showed similar phenotype as the wild type under various conditions, kea4/5/6 triple mutants showed hypersensitivity to low pH, high K+, and high Na+ and displayed growth defects in darkness, suggesting that these three KEA‐type transporters function redundantly in controlling etiolated seedling growth and ion homeostasis. Detailed analysis indicated that the kea4/5/6 triple mutant exhibited cell wall biosynthesis defect during the rapid etiolated seedling growth and under high K+/Na+ condition. The cell wall‐derived pectin homogalacturonan (GalA)3 partially suppressed the growth defects and ionic toxicity in the kea4/5/6 triple mutants when grown in the dark but not in the light conditions. Together, these data support the hypothesis that the Golgi‐localized KEAs play key roles in the maintenance of ionic and pH homeostasis, thereby facilitating Golgi function in cell wall biosynthesis during rapid etiolated seedling growth and in coping with high K+/Na+ stress.  相似文献   

12.
13.
14.
The study of salt stress mechanisms in plants has become an important issue for the modern agricultural development, climate change, and global food crisis. The plant response to high salt concentrations is complex and comprehensive; it includes many different processes, which should be correctly coordinated. The effect of excessive salt concentrations on plants results in osmotic stress and creates an ionic inbalance due to the accumulation of toxic ions, such as Cl? and, especially, Na+. Salt stress also has negative impact on mineral homeostasis, in particular Ca2+ and K+. The progress in transcryptomics, genomics, and molecular biology revealed a new gene families that participate in the formation of salt stress response in plants. This review describes the fundamental principles and mechanisms of plant salt tolerance, maintenance of ion homeostasis. In this paper the detailed analysis of the maine transport membrane systems responsible for the transport of ions and their role in plant salt stress were conducted. The perspectives and directions for the further biotechnological and genetic improvement of salt tolerance in plants are underlied.  相似文献   

15.
Total ion (Na+, K+, Ca2+, SO4 2? and Cl?) accumulation by plants, ion contents in plant tissues and ion secretion by salt glands on the surface of shoots of Tamarix ramosissima adapted to different soil salinity, namely low (0.06 mmol Na+/g soil), moderate (3.14–4.85 mmol Na+/g soil) and strong (7.56 mmol Na+/g soil) were analyzed. There are two stages of interrelated and complementary regulation of ion homeostasis in whole T. ramosissima plants: (1) regulation of ion influx into the plant from the soil and (2) changing the secretion efficiency of salt glands on shoots. The secretion efficiency of salt glands was appraised by the ratio of ion secretion to tissue ion content. Independent of soil salinity, the accumulation of K+ and Ca2+ was higher than the contents of these ions in the soil. Furthermore, the accumulation of K+, Ca2+ and SO4 2? ions by plants was maintained within a narrow range of values. Under low soil salinity, Na+ was accumulated, whereas under moderate and strong salinity, the influxes of Na+ were limited. However, under strong salinity, the accumulation of Na+ was threefold higher than that under low soil salinity. This led to a change in the Na+/K+ ratio (tenfold), an increase in the activity of salt glands (tenfold) and a reduction in plant growth (fivefold). An apparently high Na+/K+ ratio was the main factor determining over-active functioning of salt glands under strong salinity. Principal component analysis showed that K+ ions played a key role in ion homeostasis at all levels of salinity. Ca2+ played a significant role at low salinity, whereas Cl? and interrelated regulatory components (K+ and proline) played a role under strong salinity. Proline, despite its low concentration under strong salinity, was involved in the regulation of secretion by salt glands. Different stages and mechanisms of ion homeostasis were dominant in T. ramosissima plants adapted to different levels of salinity. These mechanisms facilitated the accumulation of Na+ in plants under low soil salinity, the limitation of Na+ under moderate salinity and the over-activation of Na+ secretion by salt glands under strong salinity, which are all necessary for maintaining ion homeostasis and water potential in the whole plant.  相似文献   

16.

Adaptation to high salinity is achieved by cellular ion homeostasis which involves regulation of toxic sodium ion (Na+) and Chloride ion (Cl) uptake, preventing the transport of these ions to the aerial parts of the plants and vacuolar sequestration of these toxic ions. Ion transporters have long been known to play roles in maintaining ion homeostasis. Na+ enters the cell through various voltage dependent selective and non-selective ion channels. High Na+ concentration in the plasma membrane is balanced either by uptake of potassium ion (K+) by various potassium importing channels, by salt exclusion mechanism or by sequestration of Na+ in the vacuoles. Therefore, the role of high-affinity potassium transporter, the salt overly sensitive pathway, the most well-defined Na+ exclusion pathway that exports Na+ from cell into xylem and tonoplast localized cation transporters that compartmentalizes Na+ in vacuoles need to be studied in detail and applied to make the plant adaptable to saline soil. Knowledge on the regulation of expression of these transporters by the hormones, microRNAs and other non-coding RNAs can be utilized to manipulate the ion transport. Here, we reviewed paradigm of the ion transporters in salt stress signalling pathways from the recent and past studies aiding transformation of basic knowledge into biotechnological applications to generate engineered salt stress tolerant crops.

  相似文献   

17.
Plant vacuolar Na+/H+ antiporters play important roles in maintaining cellular ion homeostasis and mediating the transport of Na+ out of the cytosol and into the vacuole. Vacuolar antiporters have been shown to play significant roles in salt tolerance; however the relatively low Vmax of the Na+/H+ exchange of the Na+/H+ antiporters identified could limit its application in the molecular breeding of salt tolerant crops. In this study, we applied DNA shuffling methodology to generate and recombine the mutations of Arabidopsis thaliana vacuolar Na+/H+ antiporter gene AtNHX1. Screening using a large scale yeast complementation system identified AtNHXS1, a novel Na+/H+ antiporter. Expression of AtNHXS1 in yeast showed that the antiporter localized to the vacuolar membrane and that its expression improved the tolerance of yeast to NaCl, KCl, LiCl, and hygromycin B. Measurements of the ion transport activity across the intact yeast vacuole demonstrated that the AtNHXS1 protein showed higher Na+/H+ exchange activity and a slightly improved K+/H+ exchange activity.  相似文献   

18.
Shabala L  Cuin TA  Newman IA  Shabala S 《Planta》2005,222(6):1041-1050
The SOS signal-transduction pathway is known to be important for ion homeostasis and salt tolerance in plants. However, there is a lack of in planta electrophysiological data about how the changes in signalling and ion transport activity are integrated at the cellular and tissue level. In this study, using the non-invasive ion flux MIFE technique, we compared net K+, H+ and Na+ fluxes from elongation and mature root zones of Arabidopsis wild type Columbia and sos mutants. Our results can be summarised as follows: (1) SOS mutations affect the function of the entire root, not just the root apex; (2) SOS signalling pathway is highly branched; (3) Na+ effects on SOS1 may by-pass the SOS2/SOS3 complex in the root apex; (4) SOS mutation affects H+ transport even in the absence of salt stress; (5) SOS1 mutation affects intracellular K+ homeostasis with a plasma membrane depolarisation-activated outward-rectifying K+ channel being a likely target; (6) H+ pump also may be a target of SOS signalling. We provide an improved model of SOS signalling and discuss physiological mechanisms underlying salt stress perception and signalling in plants. Our work shows that in planta studies are essential for understanding the functional genomics of plant salt tolerance.  相似文献   

19.
The tonoplast and plasma membrane localized sodium (potassium)/proton antiporters have been shown to play an important role in plant resistance to salt stress. In this study, AtNHX1 and AtNHX3, two tonoplast Na+(K+)/H+ antiporter encoding genes from Arabidopsis thaliana, were expressed in poplar to investigate their biological functions in the resistance to abiotic stresses in woody plants. Transgenic poplar plants expressing either gene exhibited increased resistance to both salt and water-deficit stresses. Compared to the wild type (WT) plants, transgenic plants accumulated more sodium and potassium ions in the presence of 100 mM NaCl and showed reduced electrolyte leakage in the leaves under water stress. Furthermore, the proton-translocating and cation-dependent H+ (Na+/H+ or K+/H+) exchange activities in the tonoplast vesicles isolated from the leaves of transgenic plants were higher than in those isolated from WT plants. Therefore, constitutive expression of either AtNHX1 or AtNHX3 genetically modified the salt and water stress tolerance of transgenic poplar plants, providing a potential tool for engineering tree species with enhanced resistance to multiple abitotic stresses.  相似文献   

20.

About 20% of all irrigated land is adversely affected by salinity hazards and therefore understanding plant defense mechanisms against salinity will have great impact on plant productivity. In the last decades, comprehension of salinity resistance at molecular level has been achieved through the identification of key genes encoding biomarker proteins underpinning salinity tolerance. Implication of the vacuolar transport systems in plant salinity tolerance is one example of these central mechanisms rendering tolerance to saline stress. One important organelle in plant cells is the central vacuole that plays pivotal multiple roles in cell functioning under normal and stress conditions. This review thus attempts to address different lines of evidence supporting the role of the vacuolar membrane transport systems in plant salinity tolerance. Vacuolar transport systems include Na+(K+)/H+ antiporters, V-ATPase, V-PPase, Ca2+/H+ exchangers, Ca2+-ATPase, ion channels, aquaporins, and ABC transporters. They contribute essentially in retaining a high cytosolic K+/Na+ ratio, K+ level, sequestrating Na+ and Cl? into vacuoles, as well as regulation of other salinity responsive pathways. However, little is known about the regulation and functions of some of the vacuolar transporters under salinity stress and therefore need more exploration and focus. Numerous studies demonstrated that the activities of the vacuolar transporters are upregulated in response to salinity stress, confirming their central roles in salinity tolerance mechanism. The second line of evidence is that manipulation of one of the genes encoding the vacuolar transport proteins results in some successful improvement of plant salinity tolerance. Therefore, transgene pyramiding of more than one gene for developing genotypes with better and strong salinity tolerance and productivity should gain more attention in future research. In addition, we should move step further and verify the experimental data obtained from either a greenhouse or controlled environment into field trials in order to support our claims.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号