首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Plasma membrane proteins play critical roles in sensing and responding abiotic and biotic stresses in plants. In the present study, we characterized a previously unknown gene stress associated little protein 1 (SALP1) encoding a plasma membrane protein. SALP1, a small and plant-specific membrane protein, contains only 74 amino acid residues. SALP1 was constitutively expressed in various rice tissues while highly expressed in roots, leaf blade, and immature panicles. Expression analysis indicated that SALP1 was induced by various abiotic stresses and abscisic acid (ABA). Subcellular localization assay indicated that SALP1 was localized on plasma membrane in rice protoplast cells. Overexpressing of SALP1 in rice improved salt tolerance through increasing free proline contents and the expression level of OsP5CS gene, and balancing ion contents under salt stress. Moreover, SALP1 transgenic rice showed reduced sensitivity to ABA treatment, and expression level of SALP1 is not altered by ABI5-like 1 protein. Conclusively, SALP1, a novel membrane protein, is involved in salt tolerance through an ABA-independent signaling pathway in rice.  相似文献   

2.
3.
4.
5.
6.
Superoxide dismutase (SOD) proteins, which are widely present in the plant kingdom, play vital roles in response to abiotic stress. However, the functions of cucumber SOD genes in response to environmental stresses remain poorly understood. In this study, a SOD gene CsCSD1 was identified and functionally characterized from cucumber (Cucumis sativus). The CsCSD1 protein was successfully expressed in E. coli, and its overexpression significantly improved the tolerance of host E. coli cells to salinity stress. Besides, overexpression of CsCSD1 enhanced salinity tolerance during germination and seedling development in transgenic Arabidopsis plants. Further analyses showed that the SOD and CAT (catalase) activities of transgenic plants were significantly higher than those of wild-type (WT) plants under normal growth conditions as well as under NaCl treatment. In addition, the expression of stress-response genes RD22, RD29B and LEA4-5 was significantly elevated in transgenic plants. Our results demonstrate that the CsCSD1 gene functions in defense against salinity stress and may be important for molecular breeding of salt-tolerant plants.  相似文献   

7.
Germins and germin-like proteins are ubiquitous, expressed at various developmental stages and in response to various abiotic and biotic stresses. In this study, to functionally validate the OsRGLP2 promoter, 5′ deletion analysis of the promoter sequences was performed and the deletion fragments fused with the β-glucuronidase (GUS) and green fluorescent protein reporter genes were used for transient expression in tobacco as well as for generating stable transgenic Arabidopsis plants. Very high level of GUS activity was observed in agroinfiltrated tobacco leaves by the construct carrying the P-1063 and P-565 when subjected to abiotic stresses. Histochemical analysis of transgenic Arabidopsis plants revealed expression of reporter gene in root, leaf and stem sections of plants harboring P-1063 and P-565. Real-time qPCR analysis of transiently expressed tobacco leaves and transgenic Arabidopsis plants subjected to several abiotic stresses supported histochemical data and showed that P-565 responded to all the stresses to which the full-length promoter was responsive. The data suggest that P-565 may be a good alternative to full-length promoter region that harbors the necessary cis-elements in providing stable and high level of expression in response to wound, salt and temperature stresses.  相似文献   

8.
The insecticidal cry genes of Bacillus thuringiensis (Bt) have been successfully used for development of insect resistant transgenic rice plants. In this study, a novel cry2AX1 gene consisting a sequence of cry2Aa and cry2Ac gene driven by rice rbcS promoter was introduced into a rice cultivar, ASD16. Among 27 putative rice transformants, 20 plants were found to be positive for cry2AX1 gene. The expression of Cry2AX1 protein in transgenic rice plants ranged from 5.95 to 122.40 ng/g of fresh leaf tissue. Stable integration of the transgene was confirmed in putative transformants of rice by Southern blot hybridization analysis. Insect bioassay on T0 transgenic rice plants against rice leaffolder (Cnaphalocrosis medinalis) recorded larval mortality up to 83.33 %. Stable inheritance and expression of cry2AX1 gene in T1 progenies was demonstrated using Southern and ELISA. The detached leaf bit bioassay with selected T1 plants showed 83.33–90.00 % mortality against C. medinalis. The whole plant bioassay for T1 plants with rice leaffolder showed significant level of resistance even at a lower level of Cry2AX1 expression varying from 131 to 158 ng/g fresh leaf tissue during tillering stage.  相似文献   

9.
Late embryogenesis abundant (LEA) proteins are closely related to abiotic stress tolerance of plants. In the present study, we identified a novel Em-like gene from lettuce, termed LsEm1, which could be classified into group 1 LEA proteins, and shared high homology with Cynara cardunculus Em protein. The LsEm1 protein contained three different 20-mer conserved elements (C-element, N-element, and M-element) in the C-termini, N-termini, and middle-region, respectively. The LsEm1 mRNAs were accumulated in all examined tissues during the flowering and mature stages, with a little accumulation in the roots and leaves during the seedling stage. Furthermore, the LsEm1 gene was also expressed in response to salt, dehydration, abscisic acid (ABA), and cold stresses in young seedlings. The LsEm1 protein could effectively reduce damage to the lactate dehydrogenase (LDH) and protect LDH activity under desiccation and salt treatments. The Escherichia coli cells overexpressing the LsEm1 gene showed a growth advantage over the control under drought and salt stresses. Moreover, LsEm1-overexpressing rice seeds were relatively sensitive to exogenously applied ABA, suggesting that the LsEm1 gene might depend on an ABA signaling pathway in response to environmental stresses. The transgenic rice plants overexpressing the LsEm1 gene showed higher tolerance to drought and salt stresses than did wild-type (WT) plants on the basis of the germination performances, higher survival rates, higher chlorophyll content, more accumulation of soluble sugar, lower relative electrolyte leakage, and higher superoxide dismutase activity under stress conditions. The LsEm1-overexpressing rice lines also showed less yield loss compared with WT rice under stress conditions. Furthermore, the LsEm1 gene had a positive effect on the expression of the OsCDPK9, OsCDPK13, OsCDPK15, OsCDPK25, and rab21 (rab16a) genes in transgenic rice under drought and salt stress conditions, implying that overexpression of these genes may be involved in the enhanced drought and salt tolerance of transgenic rice. Thus, this work paves the way for improvement in tolerance of crops by genetic engineering breeding.  相似文献   

10.
11.
12.
13.
14.
15.
Crop plants are regularly exposed to an array of abiotic and biotic stresses, among them drought stress is a major environmental factor that shows adverse effects on plant growth and productivity. Because of this these factors are considered as hazardous for crop production. Drought stress elicits a plethora of responses in plants resulting in strict amendments in physiological, biochemical, and molecular processes. Photosynthesis is the most fundamental physiological process affected by drought due to a reduction in the CO2 assimilation rate and disruption of primary photosynthetic reactions and pigments. Drought also expedites the generation of reactive oxygen species (ROS), triggering a cascade of antioxidative defense mechanisms, and affects many other metabolic processes as well as affecting gene expression. Details of the drought stress-induced changes, particularly in crop plants, are discussed in this review, with the major points: 1) leaf water potentials and water use efficiency in plants under drought stress; 2) increased production of ROS under drought leading to oxidative stress in plants and the role of ROS as signaling molecules; 3) molecular responses that lead to the enhanced expression of stress-inducible genes; 4) the decrease in photosynthesis leading to the decreased amount of assimilates, growth, and yield; 5) the antioxidant defense mechanisms comprising of enzymatic and non-enzymatic antioxidants and the other protective mechanisms; 6) progress made in identifying the drought stress tolerance mechanisms; 7) the production of transgenic crop plants with enhanced tolerance to drought stress.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号