首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The peptide antibiotic tridecaptin caused a 2--4-fold stimulation in the incorporation of mannose from GDP-[14C]mannose and glucose from UDP-[3H]glucose into lipid-linked monosaccharides by both the particulate and the soluble enzyme fractions from pig aorta. In both cases, the major products and the ones stimulated by antibiotic were dolichyl phosphate mannose and dolichyl phosphate glucose. The stimulation in activity was unaffected by increasing concentrations of dolichyl phosphate, GDP-mannose, UdP-glucose, Mn2+ or the detergent Nonidet P40. Tridecaptin stimulation was apparently not due to protection of sugar nucleotide substrate, since addition of various concentrations of sugar nucleotides did not alter the stimulation. Nor did the addition of tridecaptin result in any increase in the amount of radioactive sugar nucleotide recovered from incubation mixtures. Tridecaptin bound to the particulate enzyme and could not be removed by centrifugation of the particles.  相似文献   

2.
The effects of the glycosylation inhibitor 2-deoxy-2-fluoro-D-glucose on the formation of the lipid-linked oligosaccharides and monosaccharides that are involved in protein glycosylation were investigated. In chick embryo cells treated with fluoroglucose the formation of lipid-linked oligosaccharides cannot go to completion and oligosaccharides with decreased amounts of glucose and mannose can be detected. These oligosaccharides are probably biosynthetic intermediates and serve as acceptors of sugar residues while reversing fluoroglucose-inhibition by the addition of mannose and glucose to the culture medium. In contrast to deoxyglucose, fluoroglucose was not incorporated into lipid-linked oligosaccharides. Fluoroglucose inhibits the formation in vivo of dolichyl phosphate glucose and dolichyl phosphate mannose, but not the transfer of those sugar residues from the lipid monophosphate derivative to the lipid-linked oligosaccharides. The pool size of UDP-glucose, but not of GDP-mannose and UDP-N-acetylglucosamine, was decreased. Also, the formation of lipid-linked N-acetylglucosamine was not affected by fluoroglucose. Fluoroglucose was applied to deplete cellular membranes of endogenous lipid-linked mannose and glucose, and can possibly be used to discern different pathways of glycosylation.  相似文献   

3.
The antibiotic bacitracin was found to inhibit the incorporation of mannose and GlcNAc from their respective sugar nucleotides into lipid-linked saccharides. The inhibition of both systems was apparent in the aorta particulate enzyme system but it was much more pronounced with the solubilized enzyme system. In both cases, GlcNAc incorporation into Dol-P-P-GlcNAc was more sensitive than mannose incorporation into Dol-P-Man, with 50% inhibition being seen at about 0.1–0.2 mm antibiotic. Bacitracin inhibition of mannose incorporation appeared to be overcome at high concentrations of dolichyl phosphate but, in these cases, an unexplained stimulation was observed. However, GlcNAc inhibition could not be overcome by high concentrations of dolichol phosphate, metal ion, or both together. Thus, the mechanism of inhibition by bacitracin is not clear. Bacitracin also inhibited the transfer of mannose from GDP-mannose to lipid-linked oligosaccharides and to glycoprotein in the particulate enzyme, as well as the transfer of radioactivity from Dol-P-Man or from lipid-linked oligosaccharides to glycoprotein. Thus, bacitracin apparently blocks each of the steps in the lipid-linked pathway. In yeast spheroplasts, bacitracin inhibited the incorporation of [14C]mannose into Dol-P-Man, into lipid-linked oligosaccharides, and into glycoprotein. However, in this case, the antibiotic also blocked the incorporation of leucine into protein. Bacitracin also inhibited the cell-free synthesis of mannosyl-phosphoryl-decaprenol in Mycobacterium smegmatis with 50% inhibition being observed at a concentration of about 0.5 mm.  相似文献   

4.
Particulate membrane fractions from pig brain catalyse the synthesis of lipid-linked sugar derivatives of the dolichyl phosphate pathway. Flavomycin, a phosphoglycolipid antibiotic produced by various species of streptomycetes, interferes with the formation of these glycolipids to a different extent. The formation of dolichyl phosphate glucose was shown to be most susceptible to the antibiotic, being blocked by about 50% in the presence of 0.2mm-flavomycin, whereas the synthesis of dolichyl diphosphate N-acetylglucosamine, dolichyl diphosphate chitobiose and dolichyl diphosphate chitobiosyl mannose required higher concentrations to achieve a comparable inhibition. Although the formation of dolichyl phosphate mannose was hardly affected, the accumulation of oligosaccharides with five to seven sugar units was observed, when dolichyl diphosphate oligosaccharides were synthesized with GDP-[(14)C]mannose in the presence of 1mm-flavomycin. This indicates that the inhibition of the synthesis of larger-sized oligosaccharides, known to be mediated by lipid-bound mannose, was not caused by an actual deficiency in dolichyl phosphate mannose. At flavomycin concentrations that inhibited the formation of dolichyl phosphate glucose by 50%, the transfer of lipid-linked saccharides to either the hexapeptide Tyr-Asn-Gly-Thr-Ser-Val or endogenous protein acceptors was hardly influenced. The mode of action of flavomycin is still obscure, but seems not to be of a competitive nature, since the inhibition was unaffected by increasing concentrations of dolichyl phosphate. Some evidence indicates that, besides a direct interaction of the antibiotic with some transferases, a non-specific incorporation into the membrane and alteration of its properties might be responsible for those inhibitory effects on all enzymes which were observed at high concentrations of flavomycin.  相似文献   

5.
Microsomal preparations from malignant human breast tumors catalyzed the transfer of mannose and glucose from GDP-[14C]-Man and UDP-[14C]-Glc into lipid-linked sugars and glycoprotein-like substances. As judged by several criteria the obtained lipid-linked monosaccharides behaved as dolichyl phosphate mannose and dolichyl phosphate glucose whereas lipid-linked oligosaccharides behaved as polyprenyl diphosphate derivatives. The optimum conditions for mannosyl- and glucosyl-transfer reactions and the effect of dolichyl phosphate, detergent and EDTA on incubation mixture were described.  相似文献   

6.
The particulate enzyme from pig aorta catalyzed the transfer of glucose from UDP-glucose into glucosyl-phosphoryl-dolichol, into lipid-linked oligosaccharides, and into glycoprotein. Radioactive lipid-linked oligosaccharides were prepared by incubating the extracts with GDP-[14C]mannose and UDP-[3H]glucose. When the labeled oligosaccharides were run on Bio-Gel P-4, the two different labels did not exactly coincide; the 3H peak eluted slightly earlier indicating that it was of higher molecular weight than the 14C material, but there was considerable overlap. The purified oligosaccharide(s) contained glucose, mannose, and N-acetylglucosamine but the ratios of these sugars varied from one enzyme preparation to another, probably depending on the endogenous oligosaccaride-lipids present in the microsomal preparation. Treatment of the [3H]glucose-labeled oligosaccharide with α-mannosidase gave rise to a 3H-labeled oligosaccharide which moved somewhat faster on Bio-Gel P-4 than the original oligosaccharide, suggesting it had lost one or two sugar residues. These data indicate that mannose and glucose are in the same oligosaccharide. The antibiotic, amphomycin, inhibited the transfer of glucose from UDP-glucose into the lipid-linked saccharides. However the synthesis of glucosyl-phosphoryl-dolichol was much more sensitive then was the synthesis of lipid-linked oligosaccharides. The glucose-labeled oligosaccharide produced in the absence of amphomycin was of high molecular weight based on paper chromatography. But in the presence of partially inhibitory concentrations of antibiotic, the oligosaccharide migrated more rapidly on paper chromatograms. However, amphomycin had no effect on the synthesis of glucosyl-ceramide by the aorta extracts. In fact, the antibiotic may stimulate glucosyl-ceramide by making more of the substrate, UDP-glucose, available for synthesis of this lipid.  相似文献   

7.
Amphomycin inhibits the incorporation of mannose from GDP-[14C]mannose and GlcNac from UDP-[3H]GlcNAc into lipid-linked saccharides by either a particulate or a solubilized enzyme fraction from pig aorta. The solubilized enzyme was much more sensitive to the antibiotic than was the particulate fraction with 50% inhibition being observed at 8–15 μg of amphomycin. Although the antibiotic inhibited mannose transfer from GDP-[14C]mannose into mannosyl-phosphoryl-dolichol, lipid-linked oligosaccharides and glycoprotein, the synthesis of mannosyl-phosphoryl-dolichol was much more sensitive to amphomycin. Amphomycin also inhibited the incorporation of mannose from GDP-[14C]mannose into mannosyl-phosphoryldecaprenol in particulate extracts of Mycobacterium smegmatis.  相似文献   

8.
Diumycin, a phosphoglycolipid antibiotic, inhibits different mannosyl transfer reactions in yeast. Using membrane preparations, the drug effectively inhibited the formation of dolichyl phosphate mannose (DolP-Man); 50% inhibition was observed at approximately 10 microgram/ml. To a lesser extent also mannosyl transfer from DolP-Man to protein decreased in presence of diumycin. Both mannosyl transfer to protein-serine/threonine acceptor sites as well as into positions within the asparagine-linked polymannose part of the yeast mannoprotein are inhibited to about 60% under conditions where DolP-Man formation is blocked. DolP-Man synthesis as well as mannosyl transfer from DolP-Man to protein are also inhibited by diumycin using solubilized enzymes and exogenous acceptor substrates. Glycosyltransfer reactions from GDP-mannose either to protein-serine/threonine-linked mannose (formation of short manno-oligosaccharides) or to dolichyl-diphosphate-linked chitobiose (formation of lipid-linked trisaccharide) are not inhibited by diumycin under conditions where DolP-Man synthesis is blocked by the antibiotic. The inhibitory action of diumycin on DolP-Man formation does not seem to be competitive with respect to dolichyl phosphate, since it cannot be overcome by higher concentrations of dolichyl phosphate.  相似文献   

9.
GDP- and UDP-deoxyglucose inhibit the incorporation of glucose from UDP-glucose into dolichyl phosphate glucose and dolichyl pyrophosphate oligosaccharides. GDP-deoxyglucose inhibits by competing with the physiological nucleotide sugars for dolichyl phosphate, and dolichyl phosphate deoxyglucose is formed. This inhibition is reversed by excess of dolichyl phosphate. UDP-deoxyglucose does not give rise to a lipid-linked derivative, and inhibition by this analog is not reversed by dolichyl phosphate. The UDP- and GDP-derivatives of deoxyglucose inhibit the incorporation of glucose into glucose-containing glycoproteins. This effect seems to be the result of the inhibition of lipid intermediates glucosylation and is comparable to the effect produced by coumarin. Cellulose synthetase activity is not affected by UDP- or GDP-deoxyglucose. On the other hand, deoxyglucose inhibits the formation of β-1,4-glucans in vivo.  相似文献   

10.
Studies were initiated to determine whether the formation of lipid-linked oligosaccharides was coupled to the synthesis of protein. Canine kidney cells were grown with [2-3H]mannose or [3H]leucine in the presence of cycloheximide or puromycin and the effect of these inhibitors on the synthesis of proteins and lipid-linked oligosaccharides was measured. In all cases, the inhibition of protein synthesis resulted in a substantial inhibition in the incorporation of mannose into the lipid-linked oligosaccharides, although the synthesis of mannosyl-phosphoryl-dolichol was only slightly inhibited. Cycloheximide had no effect on the in vitro incorporation of mannose into lipid-linked oligosaccharides when GDP-[14C]mannose was incubated with aorta microsomal preparations. The inhibition of lipid-linked oligosaccharides was apparently not due to a decrease in the amount of glycosyltransferases as a result of protein degradation in the absence of protein synthesis, nor was it the result of a more rapid degradation of lipid-linked oligosaccharides. The inhibition also did not appear to be due to limitations in the available dolichyl-phosphate. The results suggest that the formation of lipid-linked oligosaccharides may be regulated by end product inhibition.  相似文献   

11.
In the presence of exogenous dolichyl phosphate mannosyl transferase activity towards dolichyl phosphate was nearly 3-fold higher in microsomes from pig embryonic liver compared to that from adult liver. After incubation of microsomes from embryonic liver with UDP-N-acetylglucosamine and GDP-[14C]mannose lipid-linked tri- to undecasaccharides were discovered in CHCl3-CH3OH (2:1, v/v) and CHCl3-CH3OH-H2O (1:1:0.3, by vol) extracts. The main proportion of the radioactivity was incorporated into penta-, sexta and undecasaccharides. Amphomycin at concentration 500 micrograms/ml inhibited almost completely dolichyl phosphate mannose synthesis in embryonic liver microsomes without inhibition the formation of lipid-linked penta- and sextasaccharides. It was suggested that mannose transferred to lipid-linked tetra- to heptasaccharides comes from GDP-mannose but not from dolichyl phosphate mannose.  相似文献   

12.
Incubations of rat spleen lymphocytes with the required labelled nucleotide sugars lead to the formation of the various lipid-intermediates involved in the N-glycosylation of proteins. The effect of bis-(p-nitrophenyl) phosphate on the different reactions involved in the dolichol pathway has been studied. Although dolichyl phosphate mannose, dolichyl phosphate glucose and dolichyl diphosphate N-acetylglucosamine synthesis is not affected at all by bis-(p-nitrophenyl) phosphate (20 mM), this product inhibits completely the addition of the second N-acetylglucosamine residue on the dolichyl diphosphate N-acetylglucosamine acceptor. The addition of the five innermost mannose residues from GDP-mannose as donor is also strongly abolished. However, the addition of the more distal sugars, i.e. the four mannose residues using dolichyl phosphate mannose as donors and the additional glucose residues are only slightly affected. The reactions involved in the utilization of dolichyl diphosphate oligosaccharide, i.e. transfer to the proteins or degradation into soluble phospho-oligosaccharides, are also strongly inhibited. Thus bis-(p-nitrophenyl) phosphate appears to affect only the reactions involving the presence of dolichyl diphosphate sugar as substrate.  相似文献   

13.
Our previous work has shown that phenyl phosphate acts as an exogenous substrate for GDP-mannose:dolichyl phosphate mannosyltransferase in rat liver microsomal fractions to give rise to phenyl phosphate beta-D-mannose, a compound which, unlike Dol-P-Man (dolichyl phosphate beta-D-mannose), cannot act as mannose donor for further mannose-adding reactions in microsomal fractions. The study has now been extended to the action of various aryl phosphates and structurally related compounds on several other glycosyltransferase systems in the microsomal fractions. (1) Examination of the ability of these compounds to accept sugars from various sugar nucleotides indicated that the individual compounds have specificity as sugar acceptors. Thus phenyl phosphate acted as an effective acceptor for both mannose and glucose, whereas benzenephosphonic acid was active only in accepting mannose. p-Nitrophenyl phosphate was a more effective glucose acceptor than phenyl phosphate, but had only 8% of the mannose-accepting activity of phenyl phosphate. (2) Phenyl phosphate had an inhibitory effect on the transfer of mannose form GDP-mannose to lipid-linked oligosaccharides and to glycoproteins in rat liver microsomal fractions. The inhibition depended on the concentration of phenyl phosphate and on the extent of inhibition of Dol-P-Man synthesis. It is proposed that phenyl phosphate has a direct effect on the synthesis of Dol-P-Man and that its inhibition of synthesis of lipid-linked oligosaccharides and glycoproteins could be a consequence of this effect.  相似文献   

14.
A particulate membrane preparation fromSaccharomyces cerevisiae catalyzed the incorporation of mannose from GDP-mannose into lipids that were extractable in chloroform-methanol. One lipid has been previously characterized as dolichyl phosphomannose. Another one was purified by chromatography on silicic acid, DEAE-cellulose and Sephadex LH-20 and found to be alkali unstable. The lipid moiety was shown to be dolichol and the glycosydic part contained mannose, glucose and glucosamine.Radioactive mannose was also incorporated at a slower rate into more polar compounds. They were soluble in chloroform-methanol-water and were seen to liberate neutral oligosaccharides after alkaline hydrolysis.Radioactive mannose was also incorporated into substances which behave chemically as glycoproteins since they were insoluble in organic solvents, water and trichloroactic acid. Pronase treatment of the trichloroacetic acidinsoluble material released water-soluble oligosaccharides.When the particulate preparation which had been extracted with chloroform-methanol at –20 C, was incubated with GDP-(U-14C)mannose, radioactivity was incorporated into glycolipids that were soluble in chloroform-methanol-water and into glycoproteins. This result suggests that at least part of the mannose was transferred to endogenous acceptors independent of dolichyl phosphomannose.  相似文献   

15.
Incubation of rat-spleen lymphocytes with UDP-glucose together with GDP-mannose and UDP-N-acetylglucosamine leads to the formation of glucosylated lipid intermediates characterized as dolichyl phosphate glucose and dolichyl diphosphate oligosaccharides. This latter can be either transferred onto endogenous protein acceptors or cleaved into phosphooligosaccharides. The striking fact is that phosphooligosaccharide populations contain far less glucosylated products than the dolichyl diphosphate oligosaccharide ones from which they are derived. Two hypotheses have been investigated: either a rapid action of glucosidases on the liberated phosphooligosaccharides or a preferential splitting of the non-glucosylated population of dolichyl diphosphate oligosaccharides. Addition of p-nitrophenyl-alpha-D-glucoside inhibits glucosidase activities and allows the production of a major population of dolichyl diphosphate oligosaccharides containing three glucose residues. Using these conditions, it is shown that the amount of phosphooligosaccharides generated from the splitting of dolichyl diphosphate oligosaccharides is greatly decreased and that the major part of these remaining phosphooligosaccharides do not contain glucose. These results show that the presence of glucosyl units prevent dolichyl diphosphate oligosaccharides from further degradation into phosphooligosaccharides.  相似文献   

16.
Inhibitors of the biosynthesis and processing of N-linked oligosaccharides   总被引:15,自引:0,他引:15  
A number of glycoproteins have oligosaccharides linked to protein in a GlcNAc----asparagine bond. These oligosaccharides may be either of the complex, the high-mannose or the hybrid structure. Each type of oligosaccharides is initially biosynthesized via lipid-linked oligosaccharides to form a Glc3Man9GlcNAc2-pyrophosphoryl-dolichol and transfer of this oligosaccharide to protein. The oligosaccharide portion is then processed, first of all by removal of all three glucose residues to give a Man9GlcNAc2-protein. This structure may be the immediate precursor to the high-mannose structure or it may be further processed by the removal of a number of mannose residues. Initially four alpha 1,2-linked mannoses are removed to give a Man5 - GlcNAc2 -protein which is then lengthened by the addition of a GlcNAc residue. This new structure, the GlcNAc- Man5 - GlcNAc2 -protein, is the substrate for mannosidase II which removes the alpha 1,3- and alpha 1,6-linked mannoses . Then the other sugars, GlcNAc, galactose, and sialic acid, are added sequentially to give the complex types of glycoproteins. A number of inhibitors have been identified that interfere with glycoprotein biosynthesis, processing, or transport. Some of these inhibitors have been valuable tools to study the reaction pathways while others have been extremely useful for examining the role of carbohydrate in glycoprotein function. For example, tunicamycin and its analogs prevent protein glycosylation by inhibiting the first step in the lipid-linked pathway, i.e., the formation of Glc NAc-pyrophosphoryl-dolichol. These antibiotics have been widely used in a number of functional studies. Another antibiotic that inhibits the lipid-linked saccharide pathway is amphomycin, which blocks the formation of dolichyl-phosphoryl-mannose. In vitro, this antibiotic gives rise to a Man5GlcNAc2 -pyrophosphoryl-dolichol from GDP-[14C]mannose, indicating that the first five mannose residues come directly from GDP-mannose rather than from dolichyl-phosphoryl-mannose. Other antibodies that have been shown to act at the lipid-level are diumycin , tsushimycin , tridecaptin, and flavomycin. In addition to these types of compounds, a number of sugar analogs such as 2-deoxyglucose, fluoroglucose , glucosamine, etc. have been utilized in some interesting experiments. Several compounds have been shown to inhibit glycoprotein processing. One of these, the alkaloid swainsonine , inhibits mannosidase II that removes alpha-1,3 and alpha-1,6 mannose residues from the GlcNAc- Man5GlcNAc2 -peptide. Thus, in cultured cells or in enveloped viruses, swainsonine causes the formation of a hybrid structure.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
A particulate enzyme preparation prepared from the intimal layer of pig aorta catalyzed the transfer of mannose from mannosyl-phosphoryl-polyprenol (MPP) into a series of oligosaccharides that were linked to lipid. The reaction required detergent with Triton X-100 and NP-40 being best at a concentration of 0.5%. Several other detergents were inactive or only slightly active. The pH optima for this activity was about 7 to 7.5 in Tris buffer and the apparent Km for MPP was about 2 x 10(-7) M. The reaction was not stimulated by the addition of divalent cation and, in fact, was inhibited by the high concentrations of cation. The addition of EDTA did not inhibit the transfer of mannose from MPP and was somewhat stimulatory. The transferase(s) activity was "solubilized" from the particles by treatment with Triton X-100. This solubilized enzyme still formed a series of lipid-linked oligosaccharides from either MPP or GDP-mannose. The oligosaccharides were released from the lipid by mild acid hydrolysis and were separated by paper chromatography. Some five or six radioactive oligosaccharides were formed from either MPP or from GDP-mannose and these oligosaccharides had similar mobilities upon paper chromatography. However, MPP was a better donor for the larger oligosaccharides (i.e. those containing 8, 9, or 10 sugar residues), whereas GDP-mannose was better for formation of the oligosaccharide containing 7 sugar residues. In the presence of EDTA and detergent no MPP was formed from GDP-mannose, but radioactivity was still incorporated into the lipid-linked oligosaccharides. Under these conditions essentially all of the radioactivity was in the oligosaccharide containing 7 sugar residues. Since much of this activity could be released as mannose by acetolysis, GDP-mannose may be the direct mannosyl donor for formation of 1 leads to 6 branches. Oligosaccharides 7, 8, 9, and 10 were isolated and partially characterized in terms of their molecular weights, sugar composition, susceptibility to alpha-mannosidase, and 14C products formed by acetolysis and periodate oxidation. The molecular weights ranged from 1310 for oligosaccharide 7 to 1750 for oligosaccharide 10. Hydrolysis of each oligosaccharide and reduction with NaB3H4 gave the expected ratio of [3H]hexitol to [3H]hexosaminitol based on the molecular weight of the oligosaccharide. However, the hexitol fraction contained [3H]mannitol and [3H]glucitol. Since the amount of radioactivity in glucitol was 2 to 4 times that in mannitol and since only glucosaminitol was found in the amino sugar peak, it seems likely that each 14C-oligosaccharide was contaminated with an unlabeled oligosaccharide of equal molecular weight containing glucose and GlcNAc. Acetolysis of the 14C-oligosaccharides gave rise to 14C peaks of mannose, mannobiose, and mannotriose. In the larger oligosaccharides, most of the radioactivity was in mannobiose whereas in oligosaccharide 7 most of the radioactivity was in mannose...  相似文献   

18.
Following treatment of Chinese hamster ovary cells with inhibitors of mevalonate biosynthesis in the presence of exogenous cholesterol, the cellular concentration of phosphorylated dolichol and the incorporation of [3H]mannose into dolichol-linked saccharides and N-linked glycoproteins declined coincident with a decline in DNA synthesis. Addition of mevalonate to the culture medium increased rates of mannose incorporation into lipid-linked saccharides and restored mannose incorporation into N-linked glycoproteins to control levels within 4 h. After an additional 4 h, synchronized DNA synthesis began. Inhibition of the synthesis of lipid-linked oligosaccharides and N-linked glycoproteins by tunicamycin prevented the induction of DNA synthesis by mevalonate, indicating that glycoprotein synthesis was required for cell division. The results suggest that the rate of cell culture growth may be influenced by the level of dolichyl phosphate acting to limit the synthesis of N-linked glycoproteins.  相似文献   

19.
Dolichyl monophosphate and its sugar derivatives in plants.   总被引:10,自引:5,他引:5       下载免费PDF全文
A glucose acceptor was isolated from soya beans by extraction with chloroform/methanol (2:1, v/v), followed by DEAE-cellulose column chromatography of the extract. This acceptor could not be distinguished from liver dolichyl monophosphate by t.l.c. It could replace dolichyl monophosphate as a mannose acceptor with a liver enzyme and its glucosylated derivative could replace dolichyl monophosphate glucose as a glucose donor in the same system. These results, together with those already reported [Pont Lezica, Brett, Romero Martinez & Dankert (1975) Biochem, Biophys. Res. Commun. 66, 980-987], indicate that the acceptor from soya bean is a dolichyl monophosphate. Gel filtration of its glucosylated derivative on Sephadex G-75 in the presence of sodium deoxycholate indicated that the acceptor contained 17 or 18 isoprene units. An enzyme preparation from pea seedlings was shown to use endogenous acceptors to form lipid phosphate sugars containing mannose and N-acetylglucosamine from GDP-mannose and UDP-N-acetylglucosamine. Chromatographic and degradative techniques indicated that the compounds formed were lipid monophosphate mannose, lipid pyrophosphate N-acetylglucosamine, lipid pyrophosphate chitobiose and a series of lipid pyrophosphate oligosaccharides containing both mannose and N-acetylglucosamine. None of these compounds was degraded by catalytic hydrogenation, and so the lipid moiety in each case was probably an alpha-saturated polyprenol. The endogenous acceptors for mannose and N-acetylglucosamine in peas may therefore be dolichyl monophosphate, as has been found in mammalian systems.  相似文献   

20.
Pea membranes supplied with GDP-[14C]mannose, UDP-N-[14C]acetylglucosamine or UDP-[14C]glucose catalyze the transfer of 14C-labeled sugars or sugar phosphates to endogenous lipid acceptors as well as to exogenously added dolichyl phosphates. Fully unsaturated polyprenyl phosphates were not used as effective acceptors by this system. Mannosyl-P-dolichol was formed most rapidly in the presence of long-chained dolichyl-P while mannosyl-PP-, glucosyl-PP- and GlcNAc-PP-dolichol were preferentially formed from relatively short-chained dolichyl phosphate acceptors. Glucosyl-PP- and mannosyl-PP-dolichol accumulated in the preparation without further metabolism, but GlcNAc-PP-dolichol was lengthened by addition of a second GlcNAc plus several [14C]mannose units to form an oligosaccharide fraction susceptible to the action of endoglycosidase H. This lipid-linked oligosaccharide could then be glycosylated in the presence of UDP-[14C]glucose to form a longer oligosaccharide. It is concluded that levels of endogenous dolichyl phosphates in pea membranes are rate-limiting for several of the key glycosyltransferases required for oligosaccharide assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号